A Practical Introduction to Federated Learning

FederatedScope Team https://federatedscope.io/ In-Person Presenter: Yaliang Li, Zhen Wang, Bolin Ding

Alibaba Group

Agenda of Tutorial

- Overview
- Personalized Federated Learning
- Federated Graph Learning
- Federated Hyperparameter Optimization

Privacy Attacks

Privacy Leakage in Practice

• App users are required to upload private local data for plentiful services

Privacy Leakage in Practice

• Organizations/companies (such as hospitals and banks) exchange data for research or business purposes

Concerns and Regulations

- The public's awareness of privacy protection
- Protection regulations, such as GDPR[1]

[1] General Data Protection Regulation (GDPR). <u>https://gdpr-info.eu</u>

Federated Learning

- Federated Learning is a learning paradigm proposed for collaboratively training models from dispersed data
- Instead of sharing the private data, participants only share the learned knowledge

Federated Learning: Cross-device

• A large number of mobile or IoT devices with local stored data collaboratively learn a global model

Federated Learning: Cross-silo

• Multiple parties collaboratively learn global knowledge based on their private data with similar or complementary features

Privacy Protection Techniques

To further satisfy privacy protection requirements, various privacy protection techniques can be integrated into FL:

- Differential Privacy (DP)
- Homomorphic Encryption (HE)
- Secure Multi-Party Computation (MPC)

Differential Privacy (DP)

- The information are perturbed before sharing
- Trade-off between privacy protection and model utility
- Privacy budget allocation

Homomorphic Encryption (HE)

- Participants are allowed to perform computations on encrypted data
- E.g., additively HE: [a] + [b] = [a + b]

Secure Multi-Party Computation (MPC)

• MPC aims to jointly compute a function by multiple participants while keeping the original inputs private.

Federated Learning Platforms

1	TensorFlow Federated	Google
	PySyft	OpenMined
	PaddleFL	Baidu
FATE	FATE	WeBank
ES FederatedScope	FederatedScope	Alibaba Group
and more		

FederatedScope

- <u>FederatedScope</u>[2] is an easy-to-use FL platform which employs an event-driven architecture
- FederatedScope provides users with great flexibility to independently describe the behaviors of different participants, friendly for research

[2] FederatedScope: A Flexible Federated Learning Platform for Heterogeneity. arXiv preprint, 2022.

• Take vanilla FedAvg[3] as an example

[3] Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017. 15

• Take vanilla FedAvg[3] as an example

Procedural

Server broadcasts model to Clients;Client #1 receives the model, trains locally, returns model updates;Client #2 receives the model, trains locally, returns model updates;Server receives the model updates, preforms aggregation, and sends global model;

• Take vanilla FedAvg[3] as an example

A simple customization started from FedAvg

Instantiate Server, Client #1, Client #2; Server broadcasts the global model.

System Design of FederatedScope

Worker Module: Server/Client

• The behaviors of Server/Client are described via event-handler pairs

- Server/Client own local data and model
- Server/Client need to exchange messages during the training process

Worker Module: Trainer/Aggregator

- Client performs local training via Trainer; Server performs aggregation via Aggregator
- Trainer/Aggregator encapsulate the algorithm details, which are entirely decoupled from the federated behaviors of Server/Client

Worker Module: Monitor

- Monitor are used to record and report the training logs and evaluation metrics
- Both client-wise and global results can be visualized

Communication Module: Communicator

- Communicator supports the message exchanging among workers, which encapsulates the communication details
- Communicator provides a unified interface for standalone simulation and distributed deployment

Communication Module: Message

- The exchanged information among workers are abstracted as messages
- Receiving different type of messages (i.e., events) might trigger different handing actions (i.e., handler)

Developers can implement vanilla FedAvg with FederatedScope as following steps:

Describe behaviors of clients/server via event-handler pairs
 When receiving global model -> Perform local training and return updates

```
class Client(object):
    def handler_for_receiving_models(args):
        # Perform local training when receiving the global models
        model_update = trainer.train(model=args.model, data=args.data)
        # Return the model updates to the server
        communicator.send(message=model_update, receiver=server)
```

Developers can implement vanilla FedAvg with FederatedScope as following steps:

Describe behaviors of clients/server via event-handler pairs

■ When receiving updates -> Save the updates, check aggregation condition

When achieving aggregation goal -> Perform aggregation, and start a training round or terminate the training

```
class Server(object):
    def handler_for_receiving_updates(args):
        # Save the received updates
        msg_buffer.append(args.message)
        # Perform federated aggregation if the aggregation condition
        # has been satisfied
        if check_aggregation_goal() == True:
            updated_model = aggregator.aggregate(updates=msg_buffer)
        # Start a new training round if not termination
        if check_termination() == False:
            communicator.send(message=updated_model, receiver=clients)
```

26

Developers can implement vanilla FedAvg with FederatedScope as following steps:

- Describe behaviors of clients/server via event-hander pairs
- Specify the details of local training and federated aggregation
 - The implementation of trainer is similar to that of centralized training
 - Decoupled with the federated behaviors of clients/server

class Trainer(object):

```
# Describe training behaviors (same as centralized training)
def train(received_models, data):
    # Personalized algorithms might be applied here
    local_model = update_from_global_models(received_models)
    preds = local_model.forward(data.x)
    args = [optimizer, loss_function, regularizer, ...]
    model_updates = local_model.backward(data.y, preds, args)
    return model_updates
```

Developers can implement vanilla FedAvg with FederatedScope as following steps:

- Describe behaviors of clients/server via event-hander pairs
- Specify the details of local training and federated aggregation
- Construct FL course

```
class Fed_Runner(object):
    ... ...
    def standalone_set_up(config):
        server = set_up_server(config)
        for client in clients:
            client = set_up_client(config)
    def run():
        for client in clients:
            clients.join_in()
```

Developers can implement vanilla FedAvg with FederatedScope as following steps:

- Describe behaviors of clients/server via event-hander pairs
- Specify the details of local training and federated aggregation
- Construct FL course

FederatedScope has provided rich implementation of existing FL algorithms, which allows users to conveniently apply them via easy configuring.

```
cfg.use_gpu = True
cfg.seed = 2
cfg.federate.mode = 'standalone'
cfg.federate.method = 'FedAvg'
cfg.federate.client_num = 5
cfg.federate.total_round_num = 100
cfg.data.type = 'femnist'
cfg.model.type = 'convnet2'
cfg.trainer.type = 'cvtrainer'
cfg.train.optimizer.lr = 0.001
cfg.train.optimizer.weight_decay = 0.0
cfg.grad.grad_clip = 5.0
cfg.criterion.type = 'CrossEntropyLoss'29
```

More Advantages of FederatedScope

- Asynchronous FL
- Personalization & Multiple Goals
- Cross-backend FL
- Privacy Protection Techniques

Asynchronous FL

Asynchronous training strategies are important to balance the model performance and training efficiency

Asynchronous FL

The unique behaviors of participants in asynchronous FL are modularized and provided in FederatedScope

- Staleness toleration
- Broadcasting manner
- Client sampling

Personalization & Multiple Goals

FederatedScope gives participants the right to describe their behaviors from their respective perspectives:

- Client-specific training configurations
- Diverse local training process
- Different learning goals

Cross-backend FL

FederatedScope supports cross-backend FL via message translation:

- Before sharing the messages, participants transform the messages into the pre-defined backend-independent format
- Once the messages are received, the participants parse the messages according their running backends

Privacy Protection Techniques

- For applying DP in FL, FederatedScope provides:
 - plugin operations, such as gradient clipping and noise injecting
 - implementation of state-of-the-art algorithms, such as NbAFL[4]

```
class Client(object):
    def handler_for_receiving_models(args):
        ... ...
    if config.inject_noise_before_sharing == True:
        # Inject certain noise before sharing the message
        args = [noise_distribution, budget, ...]
        protected_messages = add_noise(messages, args)
        send(message=protected_messages, receiver=server)
    else:
        send(message=messages, receiver=server)
```

Privacy Protection Techniques

- For applying DP in FL, FederatedScope provides:
 - plugin operations, such as gradient clipping and noise injecting
 - Implementation of state-of-the-art algorithms, such as NbAFL[4]
- Users can combine different behaviors together to implement more fancy DP algorithms

[4] Federated Learning With Differential Privacy: Algorithms and Performance Analysis. In IEEE TIFS, 2020.
Privacy Protection Techniques

Apply Secret Sharing in FedAvg

class Client(object):

```
def handler_for_receiving_models(args):
    # When receiving the global model from the server
    model_updates = trainer.train(model=model, data=data)
    if config.use_ss == True:
        # Broadcast the secret fragments
        secret_frames = secret_split(model_updates)
        broadcast(messages=secret_frames[1:], receiver=clients)
        broadcast(messages=secret_fragments(args):
        # When receiving the secret fragments from other clients
        msg_buffer.append(args.message)
        if check_all_frag_received():
            # Mix up the received secret fragments
            mixed_secret = mixup_secret(msg_buffer)
```

send(message=mixed_secret, receiver=server)

Split the shared message intofragments and broadcast to other clients;

Mix the received frames before sending them to the server;

Refer to <u>FederatedScope Playground</u> for more examples

1. Prepare datasets: Developers can conveniently conduct experiments on the provided dataset

```
cfg.data.type = 'femnist'
cfg.data.splits = [0.6, 0.2, 0.2]
cfg.data.batch_size = 10
cfg.data.subsample = 0.05
cfg.data.transform = [['ToTensor'], ['Normalize', {'mean': [0.1307], 'std': [0.3081]}]]
```

Refer to <u>FederatedScope Playground</u> for more examples

2. Prepare models: Developers can set up cfg.model.type = MODEL_NAME to apply a specific model architecture in FL tasks

cfg.model.type = 'convnet2'
cfg.model.out_channels = 62

Refer to FederatedScope Playground for more examples

3. Task-specific configuration

```
cfg.use_gpu = False
cfg.eval.freq = 10
cfg.eval.metrics = ['acc', 'loss_regular']
cfg.federate.mode = 'standalone'
cfg.federate.local_update_steps = 5
cfg.federate.total_round_num = 20
cfg.federate.sample_client_num = 5
cfg.federate.client_num = 10
cfg.train.optimizer.lr = 0.001
cfg.train.optimizer.weight_decay = 0.0
cfg.grad.grad_clip = 5.0
cfg.criterion.type = 'CrossEntropyLoss'
cfg.trainer.type = 'cvtrainer'
cfg.seed = 123
```

Refer to FederatedScope Playground for more examples

4. Enjoy your journey of Federated Learning!

References

[1] General Data Protection Regulation (GDPR). <u>https://gdpr-info.eu</u>

[2] FederatedScope: A Flexible Federated Learning Platform for Heterogeneity. arXiv preprint, 2022.

[3] Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

[4] Federated Learning With Differential Privacy: Algorithms and Performance Analysis. In IEEE TIFS, 2020.

Agenda of Tutorial

- Overview
- Personalized Federated Learning
- Federated Graph Learning
- Federated Hyperparameter Optimization

Privacy Attacks

Personalized Federated Learning

Outline of PFL

- Why Personalized Federated Learninig (PFL)
- Existing PFL Methods
- PFL Hands-On Practice
- PFL Benchmark

Why PFL? Next-Word Prediction Case

Typical Flow

1. Server selects clients, sends msg

2. Clients learn on private data

3. Clients upload msg (model)

4. Server aggregates msgs

Ideally: IID data

Actually: Non-IID Data

Non-IID

- Marginal Distribution Skew
 - common P(Y|X); different P(X)
 - P(X|Y); P(Y)

e.g., Users in different regions differ in their vocabularies

- Conditional Distribution Skew
 - common P(Y); different P(X|Y)
 - P(X); P(Y|X)

e.g., Users expect different next words given the same input

> Quantity (i.e., size of local data) Skew

Ideally: Powerful System Capacity

Actually: Heterogeneous Capacities

Actually: Heterogeneous Capacities

Outline

- Why Personalized Federated Learninig (PFL)
 - Non-IID Data
 - Heterogeous Device Capacities
- Existing PFL Methods
- PFL Hands-On Practice
- PFL Benchmark

Existing PFL Methods

pros: explicitly model local-global relationship;

$$\hat{h}_{loc,i}^* = \arg\min_{h\in\mathcal{H}} \hat{\mathcal{L}}_{\mathcal{D}_i}(\alpha_i h + (1-\alpha_i)\bar{h}^*)$$

[1] Adaptive personalized federated learning. In arXiv 2020.

[2] Personalized federated learning with first order model optimization. In ICLR 2020.

hard to find optimal ensemble teacher model

[3] Parameterized Knowledge Transfer for Personalized Federated Learning. In NeurIPS 2021.[4] Data-free knowledge distillation for heterogeneous federated learning. In ICML 2021.

- pros: easy-to-implement;
 rich theoretical analysis
- cons: prune to be affected by the sinlge global model

[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.[6] Personalized federated learning with moreau envelopes. In NeurIPS 2020.

$$w_{k+1,t}^{i} = w_{k+1,t-1}^{i} - \beta (I - \alpha \tilde{\nabla}^2 f_i(w_{k+1,t-1}^{i}, \mathcal{D}_t^{''i})) \tilde{\nabla} f_i(\tilde{w}_{k+1,t}^{i}, \mathcal{D}_t^{'i})$$

[6] Personalized federated learning with moreau envelopes. In NeurIPS 2020.

[7] Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS 2020.

- pros: fine-grained personalization; low costs
- > cons: hard to find optimal sub-model partititon

[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.[9] Exploiting Shared Representations for Personalized Federated Learning. In ICML 2021

Existing PFL Methods

[10] An efficient framework for clustered federated learning. In NeurIPS 2020.[11] Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints. In TNNLS 2020

- pros: client-wise relationship modeling
- cons: high storage, computing, communication costs

[12] Federated multi-task learning. In NeurIPS 2017.

[13] Federated multi-task learning under a mixture of distributions. In NeurIPS 2021.

[14] Tifl: A tier-based federated learning system. In ACM HPDC 2020.

Outline

- Why Personalized Federated Learninig (PFL)
- Existing PFL Methods
- PFL Hands-On Practice
- PFL Benchmark

From FedAvg to FedBN

- > FedBN [8]
 - Locally maintain model sub-parameters that *encode local data knowledge*
 - e.g. BN layers

From FedAvg to FedBN

> FedBN [8]

- Locally maintain model sub-parameters that *encode local data knowledge*
- e.g. BN layers
- We need to carefully filter out the model sub-parameters during FL courses
 - client local training
 - server aggregation

FedBN in FederatedScope

- Local model sub-parameter via FS
 - single-line configuration
 - 1 cfg.personalization.local_param = []
 - 2 # e.g., ['pre', 'post', 'bn']

FedBN in FederatedScope

- Local model sub-parameter via FS
 - single-line configuration
 - 1 cfg.personalization.local_param = []
 - 2 # e.g., ['pre', 'post', 'bn']
 - auto filtering during FL processes

```
# trainer.print trainer meta info()
1
2
    Model meta-info: <class 'federatedscope.cv.model.cnn.ConvNet2'>.
3
   Num of original para names: 18.
4
5
    Num of original trainable para names: 12.
    Num of preserved para names in local update: 8.
6
    Preserved para names in local update: {'fc2.bias', 'conv1.weight', 'conv2.weigh
7
8
    Num of filtered para names in local update: 10.
    Filtered para names in local update: {'bn2.weight', 'bn2.num_batches_tracked',
9
```

From FedAvg to Ditto

- > Ditto [5]
 - maintain both local & global models --> improved fairness & robustness
 - local model is trained with para regularization

From FedAvg to Ditto

- > Ditto [5]
 - maintain both local & global models --> improved fairness & robustness
 - local model is trained with para regularization
- ➤ We need to
 - maintain client-specific model objects
 - (client) trains global model as FedAvg does
 - (client) trains local model with regularization

Ditto in FederatedScope

- Ditto attribute customization
 - maintain client-specific models

```
# ------ action-level plug-in ------
base_trainer.register_hook_in_train(
    new_hook=hook_on_fit_start_set_regularized_para,
    trigger="on_fit_start",
    insert_pos=0)
```

```
....
```

Ditto in FederatedScope

- Ditto behavior customization
 - incorporate parameter regularization into the local training

```
def wrap_DittoTrainer(
    base_trainer: Type[GeneralTorchTrainer]) -> Type[GeneralTorchTrainer]:
    # ------ attribute-level plug-in ------
    init_Ditto_ctx(base_trainer)
    # ------ action-level plug-in ------
base_trainer.register_hook_in_train(
    new_hook=hook_on_fit_start_set_regularized_para,
    trigger="on_fit_start",
    insert_pos=0)
```

Customization with FS-Trainer

Decoupled attributes & behaviors

Customization with FS-Trainer

- Decoupled attributes & behaviors
- Attribute Customization: Context
 - self-management life-cycle
 - built-in models, optimizers, etc.,

FS-Trainer-Context

- Context Variables
 - self-management life-cycle

@lifecycle("batch"

```
def _run_batch(self):
    batch_num = self.ctx.get(
        "num_{}_batch".format(self.ctx.cur_data_split))
    for batch_i in range(batch_num):
        self.ctx.cur_batch_i = CtxStatsVar(batch_i)
```

```
for hook in self._get_hooks("on_batch_start"):
    hook(self.ctx)
for hook in self._get_hooks("on_batch_forward"):
    hook(self.ctx)
for hook in self._get_hooks("on_batch_backward"):
    hook(self.ctx)
for hook in self._get_hooks("on_batch_end"):
    hook(self.ctx)
```

```
# Break in the final epoch
if self.ctx.cur_mode == 'train' and self.ctx.cur_epoch_i ==
    self.ctx.num_train_epoch - 1:
    if batch_i >= self.ctx.num_train_batch_last_epoch - 1:
        break
```

@lifecycle("routine")

def _run_routine(self, mode, dataset_name=None):
 for hook in self._get_hooks("on_fit_start"):
 hook(self.ctx)

self._run_epoch()

for hook in self._get_hooks("on_fit_end"):
 hook(self.ctx)

@lifecycle("epoch") def _run_epoch(self): epoch_num = self.ctx.get("num_{}_epoch".format(self.ctx.cur_data_split)) for epoch_i in range(epoch_num): self.ctx.cur_epoch_i = CtxStatsVar(epoch_i, "epoch")

```
for hook in self._get_hooks("on_epoch_start"):
    hook(self.ctx)
```

```
self._run_batch()
```

```
for hook in self._get_hooks("on_epoch_end"):
    hook(self.ctx)
```

Implement Ditto via FS - Attribute

def wrap_DittoTrainer(

base_trainer: Type[GeneralTorchTrainer]) -> Type[GeneralTorchTrainer]:

```
----- attribute-level plug-in ------
   init_Ditto_ctx(base_trainer)
   # ------ action-level plug-in ------
   base trainer.register hook in train(
      new_hook=hook_on_fit_start_set_regularized_para,
      trigger="on fit start",
      insert pos=∅)
   . . .
def init_Ditto_ctx(base_trainer):
    ctx.global_model = copy.deepcopy(ctx.model)
    ctx.local_model = copy.deepcopy(ctx.model) # the personalized model
    1.1.1
```

[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

Customization with FS-Trainer

- Decoupled attributes & behaviors
- Attribute Customization: Context
 - self-management life-cycle
 - built-in models, optimizers, etc.,
- Behavior Customization
 - unified high-level routine APIs
 - pluggable hook functions

FS-Trainer-Hooks

- Point-in-time based pluggable hooks
 - {fit|epoch|batch}
 - {start|end|forward|backward}
- Hooks can be flexibly {insert, modify, replace}

```
@lifecycle("batch")
def _run_batch(self):
    batch_num = self.ctx.get(
        "num_{}_batch".format(self.ctx.cur_data_split))
    for batch_i in range(batch_num):
        self.ctx.cur_batch_i = CtxStatsVar(batch_i)
```

```
for hook in self._get_hooks("on_batch_start"):
    hook(self.ctx)
for hook in self._get_hooks("on_batch_forward"):
    hook(self.ctx)
for hook in self._get_hooks("on_batch_backward"):
    hook(self.ctx)
for hook in self._get_hooks("on_batch_end"):
    hook(self.ctx)
```

```
# Break in the final epoch
if self.ctx.cur_mode == 'train' and self.ctx.cur_epoch_i ==
    self.ctx.num_train_epoch - 1:
    if batch_i >= self.ctx.num_train_batch_last_epoch - 1:
        break
```

@lifecycle("routine")

def _run_routine(self, mode, dataset_name=None):

for hook in self._get_hooks("on_fit_start"):
 hook(self.ctx)

self._run_epoch()

for hook in self._get_hooks("on_fit_end"):
 hook(self.ctx)

```
@lifecycle("epoch")
def _run_epoch(self):
    epoch_num = self.ctx.get(
        "num_{}_cpoch".format(self.ctx.cur_data_split))
    for epoch_i in range(epoch_num):
        self.ctx.cur_epoch_i = CtxStatsVar(epoch_i, "epoch")
```

for hook in self._get_hooks("on_epoch_start")
 hook(self.ctx)

```
self._run_batch()
```

```
for hook in self._get_hooks("on_epoch_end"):
    hook(self.ctx)
```

Implement Ditto via FS - Behavior

def wrap_DittoTrainer(

base_trainer: Type[GeneralTorchTrainer]) -> Type[GeneralTorchTrainer]:

```
# ----- attribute-level plug-in ------ init_Ditto_ctx(base_trainer)
```

```
# ------ action-level plug-in ------
base_trainer.register_hook_in_train(
    new_hook=hook_on_fit_start_set_regularized_para,
    trigger="on_fit_start",
    insert_pos=0)
```

Implement Ditto via FS - Behavior

def wrap_DittoTrainer(

base_trainer: Type[GeneralTorchTrainer]) -> Type[GeneralTorchTrainer]:

----- attribute-level plug-in ----- init_Ditto_ctx(base_trainer)

------ action-level plug-in base trainer.register hook in train(

new_hook=hook_on_fit_start_set_regularized_para, trigger="on_fit_start", insert_pos=0)

```
def hook_on_fit_start_set_regularized_para(ctx):
    # After received the global model,
    # set the compared model data for local personalized model
    ctx.local_model.to(ctx.device)
    ctx.local_model.train()
    compared_global_model_para = [{
        "params": list(ctx.global_model.parameters())
    }]
    ctx.optimizer_for_local_model.set_compared_para_group()
```

compared_global_model_para)

PFL Implementation via FS

FS provides flexible behavior customization

- Inter-Clients/Server Customization
 - event-driven
 - message/handler from own view
- Intra-Clients/Server Customization
 - modular *Trainer* object
 - clients/server distinct

Outline

- Why Personalized Federated Learninig (PFL)
- Existing PFL Methods
- PFL Hands-On Practice
- PFL Benchmark

PFL Benchmark – Implementations

ArXiv: pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning

Fruitful pluggable hooks and sub-routines

> 20+ competitive PFL baseline implementations

Global-Train Isolated FedAvg FedAvg-FT FedOpt FedOpt-FT	
pFedMe pFedMe-FT	

FedEM FedEM-FT FedEM-FedBN FedEM-FedBN-FT FedEM-FedBN-FedOPT FedEM-FedBN-FedOPT-FT FedBN FedBN-FT FedBN-FedOPT FedBN-FedOPT-FT

Ditto Ditto-FT Ditto-FedBN Ditto-FedBN-FT Ditto-FedBN-FedOpt Ditto-FedBN-FedOpt-FT

PFL Benchmark – Datasets

Dataset	Task	Model	Partition By	# Clients	# Sample Per Client		
FEMNIST-5%			Writers	200	μ=217	<i>σ</i> =73	
CIFAR10- $\alpha 5$	Image Classification	CNN		100	$\mu = 600$	$\sigma = 46$	
CIFAR10- α 0.5	8-		Labels	100	$\mu = 600$	$\sigma = 137$	
$CIFAR10-\alpha 0.1$				100	$\mu = 600$	$\sigma = 383$	
COLA	Linguistic Acceptability	BERT	Labels	50	$\mu = 192$	σ =159	
SST-2	Sentiment Analysis	DERI	Labers	50	μ =1,364	<i>σ</i> =1,291	
Cora				5	μ=542	<i>σ</i> =30	
Pubmed	Node Classification	GIN	Community	5	μ=3,943	<i>σ</i> =34	
Citeseer				5	μ =665	<i>σ</i> =29	
MovieLens1M	Decommondation	ME	User	1000	µ=1,000	<i>σ</i> =482	
MovieLens10M	Recommendation	MIL	Item	1000	µ=10,000	<i>σ</i> =8,155	

pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning

PFL Benchmark – End2End Evaluation

Server/Clients side monitoring

```
'Role': 'Server #',
'Round': 200,
'Results_weighted_avg': {
    'test_avg_loss': 0.58, 'test_acc': 0.67, 'test_correct': 3356,
    'test loss': 2892, 'test total': 5000
   },
'Results avg': {
    'test avg loss': 0.57, 'test acc': 0.67, 'test correct': 3356,
    'test loss': 2892, 'test total': 5000
   },
'Results fairness': {
    'test_correct': 3356, 'test_total': 5000,
    'test_avg_loss_std': 0.04, 'test_avg_loss_bottom_decile': 0.52,
    'test avg loss top decile': 0.64, 'test acc std': 0.06,
    'test acc bottom decile': 0.60, 'test acc top decile': 0.75,
    'test loss std': 214.17, 'test loss bottom decile': 2644.64,
    'test loss top decile': 3241.23
   },
```

PFL Benchmark – End2End Evaluation

Server/Clients side 'Role': 'Server #', 'Round': 200, monitoring 'Results_weighted_avg': { 'test_avg_loss': 0.58, 'test_acc': 0.67, 'test_correct': 3356, 'test loss': 2892, 'test_total': 5000 \succ Fruitful result }, 'Results_avg': { aggregation manners 'test_avg_loss': 0.57, 'test_acc': 0.67, 'test_correct': 3356, • global avg 'test loss': 2892, 'test total': 5000 global weighted avg • }, 'Results fairness': { individual • 'test correct': 3356, 'test_total': 5000, 'test_avg_loss_std': 0.04, 'test_avg_loss_bottom_decile': 0.52, 'test_avg_loss_top_decile': 0.64, 'test_acc_std': 0.06, 'test acc bottom decile': 0.60, 'test acc top decile': 0.75, 'test loss std': 214.17, 'test loss bottom decile': 2644.64, 'test_loss_top_decile': 3241.23 },

PFL Benchmark – End2End Evaluation

- Server/Clients side monitoring
- Fruitful result aggregation manners
 - global avg
 - global weighted avg
 - individual
- Fruitful metrics
 - generalization: loss, acc, ...
 - fariness: std, quantiles, ...
 - system efficiency: flops, ...

```
'Role': 'Server #',
'Round': 200,
'Results_weighted_avg': {
    'test_avg_loss': 0.58, 'test_acc': 0.67, 'test_correct': 3356,
    'test loss': 2892, 'test_total': 5000
   },
'Results avg': {
    'test avg loss': 0.57, 'test_acc': 0.67, 'test_correct': 3356,
    'test_loss': 2892, 'test_total': 5000
 esults_fairness': {
    'test correct': 3356, 'test total': 5000,
    'test_avg_loss_std': 0.04, 'test_avg_loss_bottom_decile': 0.52,
    'test_avg_loss_top_decile': 0.64, 'test_acc_std': 0.06,
    'test_acc_bottom_decile': 0.60, 'test_acc_top_decile': 0.75,
    'test_loss_std': 214.17, 'test_loss_bottom_decile': 2644.64,
    'test loss top decile': 3241.23
   },
```

Metric

- \overline{Acc} : average weighted by local data size
- \widetilde{Acc} : accuracy of un-participated clients
- $\Delta\,$: participation generalization gap
- Bold & <u>underlined</u>: best & second-best results among all methods
- Red & blue: best & second-best results for original methods w/o plug-ins "-"

	FEMNIST, $s = 0.2$					
	\overline{Acc}	\widetilde{Acc}	Δ			
Global-Train	52.48	-	-			
Isolated	68.74	-	-			
FedAvg	83.97	81.97	-2.00			
FedAvg-FT	86.44	84.94	-1.50			
pFedMe	87.50	82.76	-4.73			
pFedMe-FT	88.19	82.46	-5.73			
FedBN	86.72	7.86	-78.86			
FedBN-FT	88.51	82.87	-5.64			
FedBN-FedOPT	88.25	8.77	-79.49			
FedBN-FedOPT-FT	88.14	80.25	-7.88			
Ditto	88.39	2.20	-86.19			
Ditto-FT	85.72	56.96	-28.76			
Ditto-FedBN	88.94	2.20	-86.74			
Ditto-FedBN-FT	86.53	58.96	-27.57			
Ditto-FedBN-FedOpt	88.73	2.20	-86.54			
Ditto-FedBN-FedOpt-FT	87.02	55.22	-31.80			
FedEM	84.35	82.81	-1.54			
FedEM-FT	86.17	85.01	-1.16			
FedEM-FedBN	84.37	12.88	-71.49			
FedEM-FedBN-FT	88.29	83.96	-4.33			
FedEM-FedBN-FedOPT	82.12	6.64	-75.48			
FedEM-FedBN-FedOPT-FT	87.54	85.76	-1.79			

		FEM	FEMNIST, $s = 0.2$		SST-2			PUBMED		
Metric		\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ
\overline{Acc} : average weighted by local data size	Global-Train Isolated FedAvg	52.48 68.74 83.97	- 81.97	-2.00	80.57 60.82 74.88	80.24	5.36	87.01 85.56 87.27	72.63	-14.64
\widetilde{Acc} : accuracy of un- participated clients	pFedAvg-F1 pFedMe pFedMe-FT	86.44 87.50 88.19	84.94 82.76 82.46	<u>-1.50</u> -4.73 -5.73	74.14 71.27 75.61	69.34 66.48	9.13 -1.92 -9.13	87.21 86.91 85.71	<u>71.64</u> 77.07	<u>-7.43</u> -15.27 -8.64
Δ : participation generalization gap	FedBN FedBN-FT FedBN-FedOPT FedBN-FedOPT-FT	86.72 88.51 88.25 88.14	7.86 82.87 8.77 80.25	-78.86 -5.64 -79.49 -7.88	74.88 68.81 64.70 68.65	75.40 82.43 65.50 70.56	0.52 <u>13.63</u> 0.81 1.91	88.49 87.45 87.87 87.54	52.53 80.36 42.72 77.07	-35.95 -7.09 -45.15 -10.47
Original methods w/o plug-in "-"No dominant one	Ditto Ditto-FT Ditto-FedBN Ditto-FedBN-FT Ditto-FedBN-FedOpt Ditto-FedBN-FedOpt-FT	88.39 85.72 88.94 86.53 88.73 87.02	2.20 56.96 2.20 58.96 2.20 55.22	-86.19 -28.76 -86.74 -27.57 -86.54 -31.80	52.03 56.49 56.03 53.15 57.67 52.89	46.79 65.50 46.79 66.49 46.79 66.49	-5.24 9.01 -9.24 13.34 -10.88 13.60	87.27 87.47 <u>88.18</u> 87.83 87.81 87.60	2.84 35.03 2.84 28.52 2.84 18.18	-84.43 -52.44 -85.34 -59.30 -84.97 -69.42
• Good intra-client generalization \overline{Acc} with PFL	FedEM FedEM-FT FedEM-FedBN FedEM-FedBN-FT FedEM-FedBN-FedOPT FedEM-FedBN-FedOPT-FT	84.35 86.17 84.37 88.29 82.12 87.54	82.81 85.01 12.88 83.96 6.64 85.76	-1.54 -1.16 -71.49 -4.33 -75.48 -1.79	75.78 64.86 75.43 64.96 72.25 62.26	67.67 81.63 62.81 81.04 64.69 73.87	-8.11 16.77 -12.62 16.08 -7.56 11.61	85.64 85.88 88.12 86.38 87.56 87.49	71.12 78.08 48.64 72.02 42.37 72.39	-14.52 -7.80 -39.48 -14.35 -45.19 -15.09

Metric

 \overline{Acc} : average weighted by local data size

 \widetilde{Acc} : accuracy of unparticipated clients

 Δ : participation generalization gap

Huge potential in

• PFL combination

	FEM	NIST, s	= 0.2		SST-2	5	PUBMED			
	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ	
Global-Train	52.48	-	-	80.57	-	-	87.01	-	-	
Isolated	68.74	-	-	60.82	-	-	85.56	-	-	
FedAvg	83.97	81.97	-2.00	74.88	80.24	5.36	87.27	72.63	-14.64	
FedAvg-FT	86.44	84.94	-1.50	74.14	83.28	9.13	87.21	79.78	-7.43	
pFedMe	87.50	82.76	-4.73	71.27	69.34	-1.92	86.91	71.64	-15.27	
pFedMe-FT	88.19	82.46	-5.73	75.61	66.48	-9.13	85.71	77.07	-8.64	
FedBN	86.72	7.86	-78.86	74.88	75.40	0.52	88.49	52.53	-35.95	
FedBN-FT	88.51	82.87	-5.64	68.81	82.43	13.63	87.45	80.36	-7.09	
FedBN-FedOPT	88.25	8.77	-79.49	64.70	65.50	0.81	87.87	42.72	-45.15	
FedBN-FedOPT-FT	88.14	80.25	-7.88	68.65	70.56	1.91	87.54	77.07	-10.47	
Ditto	88.39	2.20	-86.19	52.03	46.79	-5.24	87.27	2.84	-84.43	
Ditto-FT	85.72	56.96	-28.76	56.49	65.50	9.01	87.47	35.03	-52.44	
Ditto-FedBN	88.94	2.20	-86.74	56.03	46.79	-9.24	88.18	2.84	-85.34	
Ditto-FedBN-FT	86.53	58.96	-27.57	53.15	66.49	13.34	87.83	28.52	-59.30	
Ditto-FedBN-FedOpt	88.73	2.20	-86.54	57.67	46.79	-10.88	87.81	2.84	-84.97	
Ditto-FedBN-FedOpt-FT	87.02	55.22	-31.80	52.89	66.49	13.60	87.60	18.18	-69.42	
FedEM	84.35	82.81	-1.54	75.78	67.67	-8.11	85.64	71.12	-14.52	
FedEM-FT	86.17	85.01	-1.16	64.86	81.63	16.77	85.88	78.08	-7.80	
FedEM-FedBN	84.37	12.88	-71.49	75.43	62.81	-12.62	88.12	48.64	-39.48	
FedEM-FedBN-FT	88.29	83.96	-4.33	64.96	81.04	16.08	86.38	72.02	-14.35	
FedEM-FedBN-FedOPT	82.12	6.64	-75.48	72.25	64.69	-7.56	87.56	42.37	-45.19	
FedEM-FedBN-FedOPT-FT	87.54	85.76	-1.79	62.26	73.87	11.61	87.49	72.39	-15.09	

Metric

 \overline{Acc} : average weighted by local data size

 \widetilde{Acc} : accuracy of unparticipated clients

 Δ : participation generalization gap

Huge potential in

- PFL combination
- inter-client generalization

	FEM	INIST, s	= 0.2		SST-2 PUB			PUBME	BMED		
	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ		
Global-Train	52.48	-	-	80.57	-	-	87.01	-	-		
Isolated	68.74	-	-	60.82	-	-	85.56	-	-		
FedAvg	83.97	81.97	-2.00	74.88	80.24	5.36	87.27	72.63	-14.64		
FedAvg-FT	86.44	84.94	-1.50	74.14	83.28	9.13	87.21	79.78	-7.43		
pFedMe	87.50	82.76	-4.73	71.27	69.34	-1.92	86.91	71.64	-15.27		
pFedMe-FT	88.19	82.46	-5.73	75.61	66.48	-9.13	85.71	77.07	-8.64		
FedBN	86.72	7.86	-78.86	74.88	75.40	0.52	88.49	52.53	-35.95		
FedBN-FT	88.51	82.87	-5.64	68.81	82.43	13.63	87.45	80.36	-7.09		
FedBN-FedOPT	88.25	8.77	-79.49	64.70	65.50	0.81	87.87	42.72	-45.15		
FedBN-FedOPT-FT	88.14	80.25	-7.88	68.65	70.56	1.91	87.54	77.07	-10.47		
Ditto	88.39	2.20	-86.19	52.03	46.79	-5.24	87.27	2.84	-84.43		
Ditto-FT	85.72	56.96	-28.76	56.49	65.50	9.01	87.47	35.03	-52.44		
Ditto-FedBN	88.94	2.20	-86.74	56.03	46.79	-9.24	<u>88.18</u>	2.84	-85.34		
Ditto-FedBN-FT	86.53	58.96	-27.57	53.15	66.49	13.34	87.83	28.52	-59.30		
Ditto-FedBN-FedOpt	88.73	2.20	-86.54	57.67	46.79	-10.88	87.81	2.84	-84.97		
Ditto-FedBN-FedOpt-FT	87.02	55.22	-31.80	52.89	66.49	13.60	87.60	18.18	-69.42		
FedEM	84.35	82.81	-1.54	75.78	67.67	-8.11	85.64	71.12	-14.52		
FedEM-FT	86.17	85.01	-1.16	64.86	81.63	16.77	85.88	78.08	-7.80		
FedEM-FedBN	84.37	12.88	-71.49	75.43	62.81	-12.62	88.12	48.64	-39.48		
FedEM-FedBN-FT	88.29	83.96	-4.33	64.96	81.04	16.08	86.38	72.02	-14.35		
FedEM-FedBN-FedOPT	82.12	6.64	-75.48	72.25	64.69	-7.56	87.56	42.37	-45.19		
FedEM-FedBN-FedOPT-FT	87.54	85.76	-1.79	62.26	73.87	11.61	87.49	72.39	-15.09		

Metric

 \overline{Acc} : average weighted by local data size

 \widetilde{Acc} : accuracy of unparticipated clients

 Δ : participation generalization gap

Huge potential in

- PFL combination
- inter-client generalization
- text/graph datasets

	FEM	FEMNIST, $s = 0.2$			SST-2		PUBMED			
	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ	\overline{Acc}	\widetilde{Acc}	Δ	
Global-Train	52.48	-	-	80.57	-	-	87.01	-	-	
Isolated	68.74	-	-	60.82	-	-	85.56	-	-	
FedAvg	83.97	81.97	-2.00	74.88	80.24	5.36	87.27	72.63	-14.64	
FedAvg-FT	86.44	84.94	-1.50	74.14	83.28	9.13	87.21	79.78	-7.43	
pFedMe	87.50	82.76	-4.73	71.27	69.34	-1.92	86.91	71.64	-15.27	
pFedMe-FT	88.19	82.46	-5.73	75.61	66.48	-9.13	85.71	77.07	-8.64	
FedBN	86.72	7.86	-78.86	74.88	75.40	0.52	88.49	52.53	-35.95	
FedBN-FT	88.51	82.87	-5.64	68.81	82.43	13.63	87.45	80.36	-7.09	
FedBN-FedOPT	88.25	8.77	-79.49	64.70	65.50	0.81	87.87	42.72	-45.15	
FedBN-FedOPT-FT	88.14	80.25	-7.88	68.65	70.56	1.91	87.54	77.07	-10.47	
Ditto	88.39	2.20	-86.19	52.03	46.79	-5.24	87.27	2.84	-84.43	
Ditto-FT	85.72	56.96	-28.76	56.49	65.50	9.01	87.47	35.03	-52.44	
Ditto-FedBN	88.94	2.20	-86.74	56.03	46.79	-9.24	88.18	2.84	-85.34	
Ditto-FedBN-FT	86.53	58.96	-27.57	53.15	66.49	13.34	87.83	28.52	-59.30	
Ditto-FedBN-FedOpt	88.73	2.20	-86.54	57.67	46.79	-10.88	87.81	2.84	-84.97	
Ditto-FedBN-FedOpt-FT	87.02	55.22	-31.80	52.89	66.49	13.60	87.60	18.18	-69.42	
FedEM	84.35	82.81	-1.54	75.78	67.67	-8.11	85.64	71.12	-14.52	
FedEM-FT	86.17	85.01	-1.16	64.86	81.63	16.77	85.88	78.08	-7.80	
FedEM-FedBN	84.37	12.88	-71.49	75.43	62.81	-12.62	88.12	48.64	-39.48	
FedEM-FedBN-FT	88.29	83.96	-4.33	64.96	81.04	16.08	86.38	72.02	-14.35	
FedEM-FedBN-FedOPT	82.12	6.64	-75.48	72.25	64.69	-7.56	87.56	42.37	-45.19	
FedEM-FedBN-FedOPT-FT	87.54	85.76	-1.79	62.26	73.87	11.61	87.49	72.39	-15.09	

PFL Benchmark – Fairness

Metric

- \overline{Acc}' : equally-weighted average
- σ : std of client-wise accuracy
- \widetilde{Acc} : bottom (90-th) accuracy over all clients

- **Bold** & <u>underlined</u>: best & second-best results among all methods
- Red & blue: best & second-best results for original methods w/o plug-ins "-"

	FEMNIST, $s = 0.2$						
	\overline{Acc}'	σ	\widecheck{Acc}				
Isolated	67.08	10.76	53.16				
FedAvg	82.40	9.91	69.11				
FedAvg-FT	85.17	8.69	72.34				
pFedMe	86.50	8.52	75.00				
pFedMe-FT	87.06	8.02	75.00				
FedBN	85.38	8.19	74.26				
FedBN-FT	<u>87.65</u>	6.33	80.02				
FedBN-FedOPT	87.27	7.34	76.87				
FedBN-FedOPT-FT	87.13	7.36	78.27				
Ditto	87.18	7.52	78.23				
Ditto-FT	84.30	8.16	73.95				
Ditto-FedBN	87.82	7.19	77.78				
Ditto-FedBN-FT	85.16	7.98	75.25				
Ditto-FedBN-FedOpt	87.64	7.08	78.23				
Ditto-FedBN-FedOpt-FT	85.71	7.91	75.81				
FedEM	82.61	9.57	69.29				
FedEM-FT	84.91	8.39	73.64				
FedEM-FedBN	82.94	9.35	70.43				
FedEM-FedBN-FT	87.09	9.24	76.36				
FedEM-FedBN-FedOPT	80.48	11.02	64.84				
FedEM-FedBN-FedOPT-FT	86.23	8.33	75.44				

PFL Benchmark – Fairness

Metric

 \overline{Acc}' : equallyweighted average

 σ : std of client-wise accuracy

 \widetilde{Acc} : bottom (90-th) accuracy over all clients

- Bias in existing evaluation
- Good bottom acc with PFL

	FEM	NIST, <i>s</i> :	= 0.2		SST-2		PUBMED			
	\overline{Acc}'	σ	\widecheck{Acc}	\overline{Acc}'	σ	\widecheck{Acc}	$ \overline{Acc}'$	σ	\widecheck{Acc}	
Isolated	67.08	10.76	53.16	59.40	41.29	0.00	84.67	6.26	74.63	
FedAvg	82.40	9.91	69.11	<u>76.30</u>	22.02	<u>44.85</u>	86.72	3.93	79.76	
FedAvg-FT	85.17	8.69	72.34	75.36	27.67	31.08	86.71	3.86	80.57	
pFedMe	86.50	8.52	75.00	65.08	26.59	27.75	86.35	4.43	78.76	
pFedMe-FT	87.06	8.02	75.00	74.36	27.02	32.49	85.47	3.06	80.95	
FedBN	85.38	8.19	74.26	<u>76.30</u>	22.02	<u>44.85</u>	87.97	3.42	81.77	
FedBN-FT	<u>87.65</u>	6.33	80.02	68.50	26.83	29.17	87.02	3.47	80.13	
FedBN-FedOPT	87.27	7.34	76.87	65.59	31.07	22.22	87.43	4.64	80.81	
FedBN-FedOPT-FT	87.13	7.36	78.27	68.42	28.18	30.71	87.02	3.94	81.78	
Ditto	87.18	7.52	78.23	49.94	40.81	0.00	86.85	3.98	80.44	
Ditto-FT	84.30	8.16	73.95	54.34	39.26	0.00	87.10	3.52	80.46	
Ditto-FedBN	87.82	<u>7.19</u>	77.78	49.44	41.80	0.00	<u>87.75</u>	3.70	81.82	
Ditto-FedBN-FT	85.16	7.98	75.25	52.18	39.85	0.00	87.43	3.77	81.15	
Ditto-FedBN-FedOpt	87.64	7.08	78.23	55.61	40.43	1.39	87.27	3.90	79.14	
Ditto-FedBN-FedOpt-FT	85.71	7.91	75.81	53.16	34.75	9.72	87.10	3.79	80.93	
FedEM	82.61	9.57	69.29	76.53	23.34	44.44	85.05	4.44	78.51	
FedEM-FT	84.91	8.39	73.64	64.29	32.84	12.96	85.54	4.48	79.39	
FedEM-FedBN	82.94	9.35	70.43	75.06	18.48	53.33	87.63	4.14	82.54	
FedEM-FedBN-FT	87.09	9.24	76.36	64.33	35.72	8.59	85.68	4.33	79.44	
FedEM-FedBN-FedOPT	80.48	11.02	64.84	72.66	27.18	34.17	87.11	4.24	80.32	
FedEM-FedBN-FedOPT-FT	86.23	8.33	75.44	58.42	31.21	17.93	87.16	3.66	<u>82.20</u>	

PFL Benchmark – Fairness

Metric

 \overline{Acc}' : equallyweighted average

 σ : std of clientwise accuracy

 \underbrace{Acc}_{Acc} : bottom (90-th) accuracy over all clients

• Huge potential in domain-

specific fairness study

	FEM	NIST, s =	= 0.2		SST-2		PUBMED		
	\overline{Acc}'	σ	\widecheck{Acc}	\overline{Acc}'	σ	\widecheck{Acc}	$ \overline{Acc}'$	σ	\widecheck{Acc}
Isolated	67.08	10.76	53.16	59.40	41.29	0.00	84.67	6.26	74.63
FedAvg	82.40	9.91	69.11	<u>76.30</u>	22.02	<u>44.85</u>	86.72	3.93	79.76
FedAvg-FT	85.17	8.69	72.34	75.36	27.67	31.08	86.71	3.86	80.57
pFedMe	86.50	8.52	75.00	65.08	26.59	27.75	86.35	4.43	78.76
pFedMe-FT	87.06	8.02	75.00	74.36	27.02	32.49	85.47	3.06	80.95
FedBN	85.38	8.19	74.26	76.30	22.02	44.85	87.97	3.42	81.77
FedBN-FT	87.65	6.33	80.02	68.50	26.83	29.17	87.02	3.47	80.13
FedBN-FedOPT	87.27	7.34	76.87	65.59	31.07	22.22	87.43	4.64	80.81
FedBN-FedOPT-FT	87.13	7.36	<u>78.27</u>	68.42	28.18	30.71	87.02	3.94	81.78
Ditto	87.18	7.52	78.23	49.94	40.81	0.00	86.85	3.98	80.44
Ditto-FT	84.30	8.16	73.95	54.34	39.26	0.00	87.10	3.52	80.46
Ditto-FedBN	87.82	<u>7.19</u>	77.78	49.44	41.80	0.00	<u>87.75</u>	3.70	81.82
Ditto-FedBN-FT	85.16	7.98	75.25	52.18	39.85	0.00	87.43	3.77	81.15
Ditto-FedBN-FedOpt	87.64	7.08	78.23	55.61	40.43	1.39	87.27	3.90	79.14
Ditto-FedBN-FedOpt-FT	85.71	7.91	75.81	53.16	34.75	9.72	87.10	3.79	80.93
FedEM	82.61	9.57	69.29	76.53	23.34	44.44	85.05	4.44	78.51
FedEM-FT	84.91	8.39	73.64	64.29	32.84	12.96	85.54	4.48	79.39
FedEM-FedBN	82.94	9.35	70.43	75.06	18.48	53.33	87.63	4.14	82.54
FedEM-FedBN-FT	87.09	9.24	76.36	64.33	35.72	8.59	85.68	4.33	79.44
FedEM-FedBN-FedOPT	80.48	11.02	64.84	72.66	27.18	34.17	87.11	4.24	80.32
FedEM-FedBN-FedOPT-FT	86.23	8.33	75.44	58.42	31.21	17.93	87.16	3.66	<u>82.20</u>

PFL Benchmark – System Efficiency

Metric

Total Flops Communication Bytes Convergence Round

- PFL pays large additional costs
- FT & FedOpt improve the convergence speeds

0.88 0.88 0.88 (Parti.) Acc (Parti.) Acc (Parti.) 0.86 0.86 0.86 Acc 0.84 0.84 0.84 0.82 0.82 0.82 1e7 1012 10^{13} 0.5 1.0 500 1000 0 Total Flops **Communication Bytes** Convergence Round FedBN-FedOPT-FT FedEM FedAvg FedEM-FT Ditto FedAvg-FT FedEM-FedBN Ditto-FT pFedMe FedEM-FedBN-FT Ditto-FedBN pFedMe-FT Ditto-FedBN-FT FedEM-FedBN-FedOPT FedBN . Ditto-FedBN-FedOpt FedEM-FedBN-FedOPT-FT FedBN-FT • Ditto-FedBN-FedOpt-FT FedBN-FedOPT

Accuracy-Efficiency Trade-off

Reference of PFL

- [1] Adaptive personalized federated learning. In arXiv 2020.
- [2] Personalized federated learning with first order model optimization. In ICLR 2020.
- [3] Parameterized Knowledge Transfer for Personalized Federated Learning. In NeurIPS 2021.
- [4] Data-free knowledge distillation for heterogeneous federated learning. In ICML 2021.
- [5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.
- [6] Personalized federated learning with moreau envelopes. In NeurIPS 2020.
- [7] Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS 2020.
- [8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.
- [9] Exploiting Shared Representations for Personalized Federated Learning. In ICML 2021
- [10] An efficient framework for clustered federated learning. In NeurIPS 2020.
- [11] Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints. In TNNLS 2020
- [12] Federated multi-task learning. In NeurIPS 2017.
- [13] Federated multi-task learning under a mixture of distributions. In NeurIPS 2021.
- [14] Tifl: A tier-based federated learning system. In ACM HPDC 2020.
- [15] pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning. In arXiv 2022

Agenda of Tutorial

- Overview
- Personalized Federated Learning
- Federated Graph Learning
- Federated Hyperparameter Optimization

Privacy Attacks

Federated Graph Learning (FGL)

FGL Is Ubiquitous

Healthcare

Anti-money laundering

Recommender system

<u>Image source</u>: Subgraph federated learning with missing neighbor generation. In NeurIPS 2021.

Molecule-related research and drug discovery

FGL Scenario (1)

□ Node classification

- Each client holds a subgraph
- Clients have no common node
- Inter-subgraph edges are missing

Image source: Subgraph federated learning with missing neighbor generation. In NeurIPS 2021.

FGL Scenario (2)

□ Node classification

- Each client holds a subgraph
- Clients have common nodes
- Intra-subgraph edges may be missing

FGL Scenario (3)

Link prediction

- Each client holds a bipartite graph
- Clients have common node
- Inter-subgraph edges are missing

Recommender system

FGL Scenario (4)

Graph classification

- Each client holds a subset of graphs
 - Different graph distributions
 - Different feature spaces
 - Different tasks of interest

 $[y_1, \mathbf{X}, \mathbf{X}, y_4, y_5]$

 $[x, y_2, x, y_4, x]$

Molecule-related research and drug discovery

Challenges in FGL

□ Non-IIDness

• The same node in different clients may have different neighbors

Anti-money laundering
Challenges in FGL

Non-IIDness

- The same node in different clients may have different neighbors
- Models have to associate different patterns with the same label

Anti-money laundering

Challenges in FGL

Molecule-related research and drug discovery

Challenges in FGL

Molecule-related research and drug discovery

Study FGL with FederatedScope-GNN (FS-G) [1]

Datasets

Very comprehensive in terms of tasks and types of heterogeneity

GNN models

• Out-of-the-box GNNs and Client-specific neural architecture

Given FGL Algorithms

• FL participants exchange heterogeneous information and have rich behaviors

Community-based splitters

- Apply community detection algorithms to partition a graph into several clusters
 - E.g., Louvain [2] and METIS [3]
- Assign clusters to clients, optionally balancing their #node
 - Nodes in the same client are densely connected

- Randomness-based splitters
 - The node set of original graph is randomly split into N subsets
 - Subgraph of each client is deduced from its nodes
- Metadata-based splitters
 - E.g., split a citation network by venue
 - E.g., split a user-item interaction network by user

□ Instance space-based splitters

- E.g., sort all molecular graphs by their scaffold, and then each client is assigned with a segment of the sorted list
- Useful for creating covariate shift

- □ Label space-based splitters
 - E.g., in relation prediction task defined on a knowledge graph, triplets are split into clients by latent dirichlet allocation (LDA) [4]
 - This creates label distribution skew

□ Task-based splitters

- E.g., one client has molecules labeled with their toxicity, another client has molecules labeled with their excitation energy.
- This creates federated hetero-task learning [5, 6]

Task	Domain	Dataset	Splitter	# Graph	Avg. # Nodes	Avg. # Edges	# Class	Evaluation
Node-level	Citation network	Cora	random&community	1	2,708	5,429	7	ACC
	Citation network	CiteSeer	eSeer random&community		4,230	5,358	6	ACC
	Citation network	PubMed	random&community	1	19,717	44,338	5	ACC
	Citation network	FedDBLP	meta	1	52,202	271,054	4	ACC
Link-level	Recommendation System	Ciao	meta	28	5,875.68	20,189.29	6	ACC
	Recommendation System	Taobao	meta	3	443,365	2,015,558	2	ACC
	Knowledge Graph	WN18	label_space	1	40,943	151,442	18	Hits@n
	Knowledge Graph	FB15k-237	label_space	1	14,541	310,116	237	Hits@n
Graph-level	Molecule	HIV	instance_space	41,127	25.51	54.93	2	ROC-AUC
	Proteins	Proteins	instance_space	1,113	39.05	145.63	2	ACC
	Social network	IMDB	label_space	1,000	19.77	193.06	2	ACC
	Multi-task	Mol	multi_task	18,661	55.62	1,466.83	3. .	ACC

FS-G [1] provides off-the-shelf FGL datasets.

Task	Domain	Dataset	Splitter	# Graph	Avg. # Nodes	Avg. # Edges	# Class	Evaluation
Node-level	Citation network	Cora	random&community	1	2,708	5,429	7	ACC
	Citation network	CiteSeer	random&community	1	4,230	5,358	6	ACC
	Citation network	PubMed	random&community	1	19,717	44,338	5	ACC
	Citation network	FedDBLP	meta	1	52,202	271,054	4	ACC
Link-level	Recommendation System	Ciao	meta	28	5,875.68	20,189.29	6	ACC
	Recommendation System	Taobao	meta	3	443,365	2,015,558	2	ACC
	Knowledge Graph	WN18	label_space	1	40,943	151,442	18	Hits@n
	Knowledge Graph	FB15k-237	label_space	1	14,541	310,116	237	Hits@n
Graph-level	Molecule	HIV	instance_space	41,127	25.51	54.93	2	ROC-AUC
	Proteins	Proteins	instance_space	1,113	39.05	145.63	2	ACC
	Social network	IMDB	label_space	1,000	19.77	193.06	2	ACC
	Multi-task	Mol	multi_task	18,661	55.62	1,466.83	-	ACC

federate:

client_num: 5

data:

root: data/

type: cora # which standalone graph dataset to use
splitter: louvain # community detection-based
splitter_args: [{'delta': 20}]
batch_size: 1 # Full batch training

Example: construct a FGL node classification task with 5 clients from citation network Cora.

Study FGL with FederatedScope-GNN (FS-G) [1]

Datasets

• Very comprehensive in terms of tasks and types of heterogeneity

GNN models

Out-of-the-box GNNs and Client-specific neural architecture

□ FGL Algorithms

• FL participants exchange heterogeneous information and have rich behaviors

Graph Neural Networks (GNN)

$\Box \text{ Given a graph } G(V, E)$

- *V* is the node set, and $E = \{(i, j) | i, j \in V\}$ is the edge set
- Each node is associated with a k-dimensional feature vector; all node features are denoted by $X \in \Re^{|V| \times k}$
- Adjacency A has $A_{ij} = 1$ if $(i, j) \in E$, otherwise $A_{ij} = 0$

What GNN does

- Generate node embeddings
- Encode both node features and graph structure

Graph Neural Networks (GNN)

□ Key idea behind GNN

- Generate node embeddings by aggregating information from neighborhood
- Use neural networks to parameterize the aggregation procedure

Image source: Machine Learning with Graphs. In Stanford CS224W.

- Let $h_i^{(l)}$ denote the embedding of node *i* at the *l*-th layer, where $h_i^{(0)} = X_i$ is defined as the raw node feature
- $\gamma^{(l)}$ () and $\phi^{(l)}$ are neural networks (e.g., MLP) for feature mapping
- "agg" is an aggregation operator, e.g., elementwise mean/min/max

ModelZoo of FederatedScope-GNN

Out-of-the-box GNNs

- Implemented based on PyG
- GCN [7], GIN [8], GAT [9], GraphSage [10], GPRGNN [11], etc.
- Various readout choices, e.g., elementwise min/mean/max

model:	
type: sage # to use GraphSage	
hidden: 64 # dimension of node	embeddings
dropout: 0.5	
out_channels: 7	
<pre>task: NodeClassification</pre>	

Example: Apply GraphSage to node-level task.

model:
type: gcn # to use GCN
hidden: 64
out_channels: 2
task: GraphClassification
<pre>graph_pooling: mean # readout operator</pre>

Example: Apply GCN to graph-level tasks.

ModelZoo is Extendable

□ Contribute and use novel GNN model

from federatedscope.register import register_model

```
class MyNet(torch.nn.Module):
   def ___init__(self,
                 in_channels.
                out_channels):
       super(MyNet, self).__init__()
       self.convs = ModuleList()
       for i in range(2):
           if i == 0:
               self.convs.append(GCNConv(in_channels, 64))
           elif (i + 1) == 2:
               self.convs.append(GCNConv(64, out_channels))
           else:
               self.convs.append(GCNConv(64, 64))
   def forward(self, data):
       x, edge_index = data.x, data.edge_index
       for i, conv in enumerate(self.convs):
           x = conv(x, edge_index)
           if (i + 1) == len(self.convs):
               break
           x = F.relu(x)
       return x
def load_my_net(model_config, data):
   model = MyNet(data.x.shape[-1],
                 model_config.out_channels)
   return model
def call_my_net(model_config, data):
   if model_config.type == "mynet":
       model = load_my_net(model_config, data)
       return model
```

register_model("mynet", call_my_net)

Implement your model based on PyG and put the .py in contrib/model/example.py

Register this model in FS-G

ModelZoo is Extendable

Contribute and use novel GNN model

from federatedscope.register import register_model

```
class MyNet(torch.nn.Module):
   def ___init__(self,
                 in_channels.
                out_channels):
       super(MyNet, self).__init__()
       self.convs = ModuleList()
       for i in range(2):
           if i == 0:
                self.convs.append(GCNConv(in_channels, 64))
           elif (i + 1) == 2:
               self.convs.append(GCNConv(64, out_channels))
           else:
               self.convs.append(GCNConv(64, 64))
   def forward(self, data):
       x, edge_index = data.x, data.edge_index
       for i, conv in enumerate(self.convs):
           x = conv(x, edge_index)
           if (i + 1) == len(self.convs):
                break
            x = F.relu(x)
       return x
def load_my_net(model_config, data):
    model = MyNet(data.x.shape[-1],
                 model_config.out_channels)
   return model
def call_my_net(model_config, data):
   if model_config.type == "mynet":
       model = load_my_net(model_config, data)
       return model
```

register_model("mynet", call_my_net)

Implement your model based on PyG and put the .py in contrib/model/example.py

> model: type: mynet out_channel: 2

Then we could use it by task: NodeClassification specifying in the .yaml

Register this model in FS-G

Client-specific Neural Architecture

Client-specific Neural Architecture

□ Handling heterogeneity

- Client-specific feature encoder
- Client-specific output layer(s)
- Shared GNN layers

declare which model parameters should not be aggregated
personalization:
 local_param: ['encoder_atom', 'encoder', 'clf']

Then only the parameters of GNN layers would be exchanged and aggregated

```
per_client.yaml
client_1:
  model:
    out_channels: 2
    task: graphClassification
  criterion:
    type: CrossEntropyLoss
  train:
    optimizer:
      lr: 0.1
  eval:
    metrics: ['acc']
client_2:
  model:
    out_channels: 1
    task: graphRegression
  criterion:
    type: MSELoss
 train:
    optimizer:
      lr: 0.01
  eval:
    metrics: ['mse']
```

Users can further specify client-wise configurations

Capability of Handling Hetero-task

□ Empirical study on Graph-DT [6]

- 16 clients, each has a graph dataset picked from TUDataset/MoleculeNet
- All are molecular graphs, but each dataset has specific atom attributes and tasks
- Clients share the MPNN layers but have client-specific atom encoders and output layers

	Overall (%)
FedAvg	1.69%
FedAvg+FT	2.13%
FedProx	-3.99%
FedBN	5.93%
FedBN+FT	8.48%
Ditto	-5.41%
FedMAML	4.64%

Average improvement ratio w.r.t. "isolated training" baseline

Study FGL with FederatedScope-GNN (FS-G) [1]

Datasets

• Very comprehensive in terms of tasks and types of heterogeneity

GNN models

• Out-of-the-box GNNs and Client-specific neural architecture

Given FGL Algorithms

• FL participants exchange heterogeneous information and have rich behaviors

AlgoZoo of FederatedScope-GNN

□ A representative FGL algorithm: FedSage+ [12]

- Attempts to mend the graph by generating missing neighbor(s)
- Mainly focuses on this scenario:

- Each client holds a subgraph
- Clients have no common node
- Inter-subgraph edges are missing

Embed nodes and pre-train neighbor generator locally

Implementing FGL Algorithms in FS-G

□ Event-driven framework

- Define various messages regarding the exchanged information
- Frame the algorithmic procedure into multiple event handlers

		Server	Client
	Message types:	Initiate: send <i>request</i>	
Training process of FedSAGE+	request, NeighGen & emb., classifier,	Handle NeighGen & emb. \rightarrow Callback B	
 Request embeddings of nodes ; 	gradients of NeighGen, gradients of classifier	Calculate gradients of NeighGen	Handle gradients \rightarrow Callback C
 Calculate gradients of NeighGen; 		Send gradients	• Update NeighGen
③ Update NeighGen;	Callback functions:	Handle gradients \rightarrow Callback D	Calculate gradients of classifier
④ Calculate gradients of classifier;	$(1) \rightarrow Callback A \qquad (2) \rightarrow Callback B$	 Aggregate gradients 	Send gradients
(5) Undate classifier	□ → Canback A ② / Canback B	 Update classifier 	Handle classifier \rightarrow Callback E
S opulle classifier,	$(3) \& (4) \rightarrow Callback C (5) \rightarrow Callback D \& E$	Send classifier	Update classifier

How we implement FedSage+ in the AlgoZoo of FS-G.

Empirical Study Using AlgoZoo of FS-G

Compare FedSage+ with GraphSage

- Identical neural architecture, but
- GraphSage is federally learned by FedAvg without graph mending

	Cora random community		Cite	eSeer	PubMed	
			random community		random community	
GraphSAGE	85.42 ± 1.80	87.19±1.28	76.86±1.38	77.80±1.03	86.45±0.43	86.87±0.53
FedSage+	85.07±1.20	87.68±1.55	78.04±0.91	77.98±1.23	88.19±0.32	87.94±0.27

Mean test accuracy \pm standard deviation

Future Directions

□ Subgraph completion

• How to borrow information from other subgraphs in a privacy-preserving manner?

□ Self-supervised learning in the FL setting

• Non-IIDness issue is exacerbated in existing observations

Federated molecular property prediction

• Both molecules and their labels can be private

References of FGL

[1] FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning. In KDD 2022.

[2] Fast unfolding of communities in large networks. In Journal of Statistical Mechanics: Theory and Experiment 2008.

[3] Multilevel k-way hypergraph partitioning. In VLSI design 2000.

[4] Latent dirichlet allocation. In JMLR 2003.

[5] Federated graph classification over non-iid graphs. In NeurIPS 2021.

[6] A Benchmark for Federated Hetero-Task Learning. In arXiv 2022.

[7] Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2017.

[8] How Powerful are Graph Neural Networks?. In ICLR 2018.

[9] Graph Attention Networks. In ICLR 2018.

[10] Inductive representation learning on large graphs. In NeurIPS 2017.

[11] Adaptive Universal Generalized PageRank Graph Neural Network. In ICLR 2020.

[12] Subgraph federated learning with missing neighbor generation. In NeurIPS 2021.

Agenda of Tutorial

- Overview
- Personalized Federated Learning
- Federated Graph Learning
- Federated Hyperparameter Optimization

Privacy Attacks

Federated Hyperparameter Optimization (FedHPO)

Hyperparameter Optimization (HPO)

Problem definition

 $\min_{\lambda\in\Lambda_1\times\cdots\times\Lambda_K}f(\lambda)$

\Box Black-box function f

- Domain
 - i.e., search space
 - e.g., learning rate $\in \Lambda_1 = [0.001, 0.1]$
 - e.g., batch size $\in \Lambda_2 = \{16, 32, 64\}$
- Function evaluation
 - Executing the corresponding algorithm with the given hyperparameter configuration $\boldsymbol{\lambda}$
 - Producing the output, e.g., validation loss

Hyperparameter Optimization (HPO)

□ Problem definition

 $\min_{\lambda \in \Lambda_1 \times \cdots \times \Lambda_K} f(\lambda)$

\Box Black-box function *f*

- Domain
 - i.e., search space
 - e.g., learning rate $\in \Lambda_1 = [0.001, 0.1]$
 - e.g., batch size $\in \Lambda_2 = \{16, 32, 64\}$
- Function evaluation
 - Executing the corresponding algorithm with the given hyperparameter configuration λ
 - Producing the output, e.g., validation loss

Continuous, ordinal, categorical, etc.

- Non-analytic, nonconvex, non-smooth, time-consuming

HPO: A Black-box Optimization View

Problem definition

 $\min_{\lambda\in\Lambda_1\times\cdots\times\Lambda_K}f(\lambda)$

\Box Black-box function f

- Domain
 - i.e., search space
 - e.g., learning rate $\in \Lambda_1 = [0.001, 0.1]$
 - e.g., batch size $\in \Lambda_2 = \{16, 32, 64\}$
- Function evaluation
 - Executing the corresponding algorithm with the given hyperparameter configuration λ
 - Producing the output, e.g., validation loss

HPO: A Black-box Optimization View

Problem definition

 $\min_{\lambda\in\Lambda_1\times\cdots\times\Lambda_K}f(\lambda)$

\Box Black-box function f

- Domain
 - i.e., search space
 - e.g., learning rate $\in \Lambda_1 = [0.001, 0.1]$
 - e.g., batch size $\in \Lambda_2 = \{16, 32, 64\}$
- Function evaluation
 - Executing the corresponding algorithm with the given hyperparameter configuration λ
 - Producing the output, e.g., validation loss

HPO: A Black-box Optimization View

Problem definition

 $\min_{\lambda\in\Lambda_1\times\cdots\times\Lambda_K}f(\lambda)$

\Box Black-box function f

- Domain
 - i.e., search space
 - e.g., learning rate $\in \Lambda_1 = [0.001, 0.1]$
 - e.g., batch size $\in \Lambda_2 = \{16, 32, 64\}$
- Function evaluation
 - Executing the corresponding algorithm with the given hyperparameter configuration $\boldsymbol{\lambda}$
 - Producing the output, e.g., validation loss

HPO: Multi-fidelity Strategy

- Exact function evaluation is unaffordable
- □ Low-fidelity function evaluation
 - E.g., training fewer epochs, on a subset, etc.
 - Balance precision and efficiency
- **\Box** Function evaluation $f(\lambda, b)$
 - Fidelity domain $b \in B_1 \times \cdots \times B_L$
 - e.g., $#epoch \in B_1 = [50, 500]$
 - e.g., fraction of used training set $\in B_2 = \{25\%, 50\%, 100\%\}$
 - Executing the algorithm with the given hyperparameter configuration λ and fidelity configuration b

Study FedHPO with FederatedScope

□ Apply existing HPO package to FederatedScope

- Compatible and easy-to-use
- □ Implement and apply multi-fidelity HPO
 - Successive halving algorithm (SHA) [1]
- □ Implement and apply FedHPO methods
 - FedEx [2] and FedEx wrapped by SHA
- □ FedHPO benchmark
 - Design, Features, and Usage of FedHPO-B [3]

Encapsulation of FederatedScope

Utilizing Emukit

Utilizing <u>SMAC</u>

```
def exec_fl_algo(x):
init_cfg = global_cfg.clone()
init_cfg["optimizer.lr"] = x['lr']
init_cfg["optimizer.weight_decay"] = x['wd']
init_cfg["model.dropout"] = x['dropout']
```

return results['weighted_avg']['val_loss']

Declare the target function, i.e., executing the FL algorithm with a given learning rate, weight decay coefficient, dropout rate.

Utilizing <u>SMAC</u>

Declare search space

Bayesian optimization with random forest model [5]

Study FedHPO with FederatedScope

□ Apply existing HPO package to FederatedScope

• Compatible and easy-to-use

□ Implement and apply multi-fidelity HPO

- Successive halving algorithm (SHA) [1]
- □ Implement and apply FedHPO methods
 - FedEx [2] and FedEx wrapped by SHA
- □ FedHPO benchmark
 - Design, Features, and Usage of FedHPO-B [3]

Successive Halving Algorithm for HPO

□ Iterative procedure

- Initiate with *n* candidate configs
- In *i*-th stage, evaluate each config with r_i resource
- The best $\frac{1}{\eta}$ candidate configs are promoted into the next stage
- Repeat these steps until only one config remaining

Motivation of SHA

↑Load

FL

Implementation in FederatedScope

return current_configs

Implementation in FederatedScope

return next_population

In PBT [6], replace this by checking improvements of performances

Let the survived candidates start FL course from their corresponding latest checkpoints

Choice of Fidelity Dimension in SHA

□ Training rounds v.s. Client sampling rate

- Train GNN by FedAvg on PubMed
- Apply SHA to optimize the hyperparameters
- The rank of searched config's test accuracy (the smaller, the better)

Study FedHPO with FederatedScope

- □ Apply existing HPO package to FederatedScope
 - Compatible and easy-to-use
- □ Implement and apply multi-fidelity HPO
 - Successive halving algorithm (SHA) [1]
- □ Implement and apply FedHPO methods
 - FedEx [2] and FedEx wrapped by SHA
- □ FedHPO benchmark
 - Design, Features, and Usage of FedHPO-B [3]

New hyperparameter dimensions Server-side: e.g., learning rate in FedOPT Broadcast $\theta^{(t)}$ $\lambda, b \qquad f(\lambda, b)$ $\theta_{\scriptscriptstyle 1}^{(t+1)}$ $\theta_{N}^{(t+1)}$ Client1 ClientN Local update $\theta_1^{(t+1)}$ $\theta^{(t)}$ **Client-side:** e.g., local update steps, learning rate, etc.

One-shot optimization

FedHPO methods

□ FedEx: a very recent and representative work

- Make concurrent exploration for client-side hyperparameters
- Can be wrapped by traditional HPO methods, e.g., SHA
 - For optimizing the server-side hyperparameters
 - For optimizing the hyperparameters of FedEx

Implementation in FederatedScope

□ FedEx: a very recent and representative work

- Introducing additional behaviors for server and client classes
- Allowing trainer class to make validation during local updates

Does Concurrent Exploration work?

□ Comparing Wrapped FedEx to the corresponding wrapper

Figure 5: Mean validation loss over time. Left: FedAvg. Right: FedOPT.

Methods	Test Accuracy
RS	67.14 ± 8.46
SHA	75.15 ± 3.44
RS+FedEx	71.25 ± 8.79
SHA+FedEx	77.46 ± 1.78

Table 5: Evaluation about the searched configurations: Mean test accuracy $(\%) \pm$ standard deviation.

Study FedHPO with FederatedScope

- □ Apply existing HPO package to FederatedScope
 - Compatible and easy-to-use
- □ Implement and apply multi-fidelity HPO
 - Successive halving algorithm (SHA)
- □ Implement and apply FedHPO methods
 - FedEx and FedEx wrapped by SHA

FedHPO benchmark

• Design, Features, and Usage of FedHPO-B

FedHPO-B: FedHPO Benchmark Suite [3]

FedHPO-B: Efficiency

Tabular mode

- Evaluating functions by looking up tables
- Viable only for discrete search space

Surrogate mode

- Evaluating functions via model inference
- Accuracy of $\hat{f}(\lambda, b)$ matters

□ Raw mode

- Standalone simulation avoids communication
- Execution time is meaningless

Common issue: how to acquire the execution time of function evaluation

FedHPO-B: Efficiency

□ System model

- Configurable
- Model parameters collected from realistic scenarios are provided

$$\begin{split} T(f,\lambda,b) &= T_{\rm comm}(f,\lambda,b) + T_{\rm comp}(f,\lambda,b),\\ T_{\rm comm}(f,\lambda,b) &= \max(\frac{N \times S_{\rm down}(f,\lambda)}{B_{\rm up}^{\rm (server)}}, \frac{S_{\rm down}(f,\lambda)}{B_{\rm down}^{\rm (client)}}) + \frac{S_{\rm up}(f,\lambda)}{B_{\rm up}^{\rm (client)}},\\ T_{\rm comp}(f,\lambda,b) &= \mathbb{E}_{T_i^{\rm (client)} \sim \operatorname{Exp}(\cdot \mid \frac{1}{c(f,\lambda,b)}), i=1,\ldots,N}[\max(\{T_i^{\rm (client)}\})] + T^{\rm (server)}(f,\lambda,b), \end{split}$$

FedHPO-B: Comprehensiveness

□ FedHPO-B provides various FedHPO tasks

FedHPO-B: Extensibility

□ FedHPO-B is developed based on FederatedScope

- Splitter: standalone dataset \rightarrow federated dataset
- Event-driven framework with customizable messages

□ A general view to unify many FedHPO methods

Empirical Study based on FedHPO-B

□ How traditional HPO methods perform in the FL setting

Future Directions

Personalized FedHPO

- Non-IIDness might lead to different optimal hyperparameter configs
- Byzantine-resilient FedHPO methods
 - Malicious contribute noisy or even bad results of function evaluations
- □ A more realistic cross-silo setting
 - Cooperation and competition

References of FedHPO

[1] Hyperband: A novel bandit-based approach to hyperparameter optimization. In JMLR 2017.

[2] Federated hyperparameter tuning: Challenges, baselines, and connections to weight-sharing. In NeurIPS 2021.

[3] FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization. In arXiv 2022.

[4] SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. In J. Mach. Learn. Res. 2022.

[5] Sequential model-based optimization for general algorithm configuration. In ICLIO 2011.

[6] Population Based Training of Neural Networks. In arXiv 2017.

Agenda of Tutorial

- Overview
- Personalized Federated Learning
- Federated Graph Learning
- Federated Hyperparameter Optimization
- Privacy Attacks

Threats in Federated Learning

[1] Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives. Cybersecur. 2022. 179

Privacy Attack

Preventing the privacy leakage is one of the important requirements of FL!

Privacy Attack:

• From the learning course of FL, infer the sensitive information related to clients' private data

- Understanding and applying privacy attacks on FL is an effective and intuitive way to detect/prevent the privacy leakage during FL course!
- Other attacks are also important but not FLspecific. More works needed...

Overview of Privacy Attack

Overview of Privacy Attack

Attack Action Type

Passive Attack:

Attacker:

- Honest-but-curious
- Steal the private information meanwhile not violating the FL protocols

Attack Action Type

Active Attack:

Attacker:

- Malicious
- Steal the private information by violating the FL protocols
 - Change loss function, gradients, model updates, training data

Overview of Privacy Attack

- **Goal:** Infer whether a specific data instance exists in other clients' private datasets
- Attacker Role: Client or Server
- Example:

GradAscent [2]: Active Attack

Goal: Infer whether target data x in other clients' private dataset.

[2] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning. IEEE Symposium on Security and Privacy 2019

GradAscent [2]:

Running GradAscent in FederatedScope:

• Configuration (insert these lines into the current file):

 The command to run the example attack on Femnist Dataset with FedAvg:

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/gradient_ascent_MIA
_on_femnist.yaml

• Running Result:

- Goal: Infer dataset properties
 - Properties:
 - Possibly sensitive
 - May not belong to the feature set
 - When batch size > 1:
 - Whether the training batch at this round contain a certain property value
- Attacker Role: Server

Example:

- FL task: whether wearing glasses?
- Additional sensitive properties: Gender

Passive Attack

PassivePIA [2]:

<u>Attacker:</u>

- Role: Server
- Prior Knowledge:
 - Auxiliary dataset (to be used after each batch)

 Feature
 Label
 Property

 Image: Image:

Auxiliary Dataset

[2] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning. IEEE Symposium on Security and Privacy 2019.

PassivePIA [2]:

- Create the training dataset for property classifier
 - Feature: Model updates/gradients
 - Label: Property
- Train the property classifier
- Infer the property on the collected model updates/gradients during FL

PassivePIA: Create the training dataset for property classifier:

At each round:

Data batches from auxiliary data

Running PassivePIA in FederatedScope on synthetic dataset:

• Synthetic dataset:

• The feature x with 5 dimension is generation by $\ N(0,0.5)$;

- Label related: $w_x \sim N(0,1)$ and $b_x \sim N(0,1)$;
- Property related: $w_p \sim N(0,1)$ and $b_p \sim N(0,1)$;
- Label: $y = w_x x + b_x$
- Property: $\operatorname{prop} = \operatorname{sigmoid}(w_p x + b_p)$

Running PassivePIA in FederatedScope on synthetic dataset:

• Configuration (insert these lines into the current file):

 The command to run the example attack on Synthetic Dataset with FedAvg:

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/PIA_toy.yaml

• Running Result:

Training Data/Label Inference Attack

- **Goal:** Reconstruct private training samples from intermediate information transmitted during FL
- Attacker Role: Server

[4] Deep leakage from gradients. NeurIPS 2019.

[5] idlg: Improved deep leakage from gradients[J]. arXiv preprint, 2020.

[6] Inverting gradients-how easy is it to break privacy in federated learning?. NeurIPS 2020.

Training Data/Label Inference Attack

Running DLG in FederatedScope:

• Configuration:

• The command to run the example attack on FEMNIST with FedAvg:

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/reconstruct_fedavg_
opt_on_femnist.yaml

Training Data/Label Inference Attack

- Goal: Infer representative samples of a specific class
- Attacker Role: Client

The client has data that only covers partial class labels, and is curious about information related to other classes!

Active Attack

GANAttack [3]

- Attacker
 - Hold and update a local GAN:
 - Generate data that classified as target label by the global model
 - Inject the mislabeled data (with the target label):
 - Reveal more label related information by amplifying the impact of training data from other clients with the target label

[3] Deep models under the GAN: information leakage from collaborative deep learning. CCS. 2017.

Victim Client

Running GANAttack on FEMNIST in FederatedScope:

• Configuration (insert these lines into the current file):

• The command to run the example attack on FEMNIST with FedAvg:

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/CRA_fedavg_convnet2
_on_femnist.yaml

Running Result:
 Images Generated by the generator:

Develop Attack Methods in FederatedScope

First make sure that the target FL algorithm has been implemented.

Server as attacker:

Attacks act during training:

- Inherit the server class
- Add the attack actions by modifying callback_funcs_model_para function

Participant Plug-In

Attacks act after training:

Participant Plug-In

- Inherit the server class
- Add the attack actions after the last round by modifying callback_funcs_model_para function

Property Inference Attack

- Inherit server class and modify callback_funcs_model_para
 - At each FL round:
 - Collect the model updates
 - Generate training data for PIA classifier

class PassivePIAServer(Server)

...

def callback_funcs_model_para(self, message: Message);

- round sender content mossage.state, message.sender, message.content
- # For a new round
- if round not in self.msg_buffer['train'].keys():
 self.msg_buffer['train'][round] = dict()

self.msg_buffer['train'][round][sender] = content

collect the update

Attacks act during training

Property Inference Attack

- Inherit server class and modify callback_funcs_model_para
 - At each FL round:
 - Collect the model updates
 - Generate training data for PIA classifier
 - After training:

Attacks act after

training

- Train PIA classifier
- Inference the property

class PassivePIAServer(Server)

...

def callback_funcs_model_para(self, message: Message);

- round sender, content message.state, message.sender, message.content
- # For a new round
- if round not in self.msg_buffer['train'].keys():
 self.msg_buffer['train'][round] = dict()

self.msg_buffer['train'][round][sender] = content

collect the updates

self.pia_attacker.get_data_for_dataset_prop_classifier(model=self.model)

if self._cfg.federate.online_aggr:
 self.aggregator.inc(content)
self.check_and_move_on()

if self.state == self.total_round_num: self.pia_attacker.train_property_classifier() self.pia_results = self.pia_attacker.infer_collected() print(self.pia_results)

Check if it is the last round

Property Inference Attack

- Inherit server class and modify callback_funcs_model_para
 - At each FL round:
 - Collect the model updates
 - Generate training data for PIA classifier
 - After training:
 - Train PIA classifier
 - Inference the property

Add the overloaded Server class to get_server_cls function

class PassivePIAServer(Server)

...

def callback_funcs_model_para(self, message: Message);

- round sender content message.state, message.sender, message.content
- # For a new round
- if round not in self.msg_buffer['train'].keys():
 self.msg_buffer['train'][round] = dict()

self.msg_buffer['train'][round][sender] = content

collect the updates

client_id=sender)
self.pia_attacker.get_data_for_dataset_prop_classifier(model=self.model)

if self._cfg.federate.online_aggr:
 self.aggregator.inc(content)
self.check_and_move_on()

- if self.state == self.total_round_num:
- self.pia_attacker.train_property_classifier()
- self.pia_results = self.pia_attacker.infer_collected()
- print(self.pia_results)

def get_server_cls(cfg):

- if cfg.attack.attack_method.lower() in ['dlg', 'ig']
 - from federatedscope.attack.worker_as_attacker.server_attacker import PassiveServer
 return PassiveServer
- elif cfg.attack.attack_method.lower() in ['passivepia']:
 - from federatedscope.attack.worker_as_attacker.server_attacker import PassivePIAServer
 return PassivePIAServer

Develop Attack Methods in FederatedScope

First make sure that the target FL algorithm has been implemented.

Client as attacker:

Attacks act <u>during</u> training:

• Wrap the trainer to add acttack actions

Attacks act after training:

- Participant Plug-In

Behavior Plug-In

- Inherit the Client class
- Add the attack actions by modifying callback_funcs_for_finish function

- Class Representative Attack
- Wrap the trainer

def wrap_GANTrainer(
 base_trainer: Type[GeneralTrainer]) -> Type[GeneralTrainer]:
Example

Example

Class Representative Attack

- Wrap the trainer
 - Hold a local GAN
 - At each FL round:
 - Before local training:
 - Update GAN' s discriminator by the received parameters, and train GAN' s generator
 - Generate fake data and mislabel
 them

insert mode=-1)

Example

Class Representative Attack

- Wrap the trainer
 - Hold a local GAN
 - At each FL round:
 - Before local training:
 - Update GAN' s discriminator by the received parameters, and train GAN' s generator
 - Generate fake data and mislabel them
 - During local bath forward:
 - Inject the fake data in training batch

def wrap_GANTrainer(

base_trainer: Type[GeneralTrainer]) -> Type[GeneralTrainer]:

----- attribute-level plug-in ------

sav_pth=base_trainer.cfg.outdir

---- action-level plug-in ----

base_trainer.register_hook_in_train(new_hook=hook_on_batch_injected_data_generation, trigger='on_batch_start', insert_mode=-1) base_trainer.register_hook_in_train(new_hook=hook_on_batch_forward_injected_data, trigger='on_batch_forward', insert_mode=-1)

return base_trainer

Defense Strategies

- Encrypt gradients
 - Secure aggregation, such as Multi-party computation (MPC);
 - Homomorphic encryption (HE)
- Perturbing gradients
 - Gradient pruning
 - Differential privacy: adding noise to gradient

FederatedScope supports the above defense strategies!

Defense Strategies

Wil be supported in FederatedScope soon!

- Weak encryption of inputs (i.e. encoding inputs)
 - MixUp [7]: create the images via linear combination of image pair
 - InstaHide[8]: extend MixUp

[7] Mixup: Beyond Empirical Risk Minimization. ICLR, 2018.

[8] InstaHide: Instance-hiding schemes for private distributed learning. ICML 2020.

Defense Strategies

- Add private components to the model (regularization, network):
 - Do not share BatchNorm layer during FL [9]
 - Secret Polarization Network [10]:
 - Some fully connected layers are kept private with its parameters not shared

Practical defense suggestions [9]:

- Use large batch size (>=32)
- Combine multiple defenses may achieve a better utility-privacy trade-off

[9] Evaluating Gradient Inversion Attacks and Defenses in Federated Learning. NeurIPS, 2021. [10] Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks. In *Federated Learning: Privacy and Incentive*. LNCS, 2020.

More Attack Methods in FederatedScope

Privacy attacks

- More SOTA privacy attacks
- Defense strategies

Poisoning attacks

- Data poisoning
- Model poisoning
- Back-door
- Defense strategies

References

[1] Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives. Cybersecur. 2022.

[2] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning. IEEE Symposium on Security and Privacy 2019.

[3] Deep models under the GAN: information leakage from collaborative deep learning. CCS. 2017.[4] Deep leakage from gradients. NeurIPS 2019.

[5] idlg: Improved deep leakage from gradients[J]. arXiv preprint, 2020.

[6] Inverting gradients-how easy is it to break privacy in federated learning?. NeurIPS 2020.

[7] Mixup: Beyond Empirical Risk Minimization. ICLR, 2018.

[8] InstaHide: Instance-hiding schemes for private distributed learning. ICML 2020.

[9] Evaluating Gradient Inversion Attacks and Defenses in Federated Learning. NeurIPS, 2021.

[10] Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks. In *Federated Learning: Privacy and Incentive*. LNCS, 2020.

Agenda of Tutorial

- Overview
- Personalized Federated Learning
- Federated Graph Learning
- Federated Hyperparameter Optimization
- Privacy Attacks

FederatedScope Team

Website: https://federatedscope.io/

Yaliang Li

Bolin Ding

Zhen Wang

Yuexiang Xie

Dawei Gao

Liuyi Yao

Daoyuan Chen

Weirui Kuang

Hongzhu Shi

Jingren Zhou

Yaliang Li, Zhen Wang, and Bolin Ding

Email: {yaliang.li, jones.wz, bolin.ding}@alibaba-inc.com

Please feel free to contact us if you have any questions, or you are interested in **full-time** or **research intern** positions.