
A Practical Introduction to
Federated Learning

FederatedScope Team
https://federatedscope.io/

In-Person Presenter: Yaliang Li, Zhen Wang, Bolin Ding

Alibaba Group

1

• Overview

• Personalized Federated Learning

• Federated Graph Learning

• Federated Hyperparameter Optimization

• Privacy Attacks

2

Agenda of Tutorial

Privacy Leakage in Practice

3

• App users are required to upload private local data for
plentiful services

Privacy Leakage in Practice

4

• Organizations/companies (such as hospitals and banks)
exchange data for research or business purposes

Concerns and Regulations

5

Are my private data safe
when being shared out?

• The public's awareness of privacy protection
• Protection regulations, such as GDPR[1]

[1] General Data Protection Regulation (GDPR). https://gdpr-info.eu

https://gdpr-info.eu/

Federated Learning

6

• Federated Learning is a learning paradigm proposed for
collaboratively training models from dispersed data
• Instead of sharing the private data, participants only share

the learned knowledge

Federated Learning: Cross-device

7

• A large number of mobile or IoT devices with local stored
data collaboratively learn a global model

Model Updates

……
Train based on
local data

Federated
Aggregation

Model Updates

Global Model

Global Model

Train based on
local data

Federated Learning: Cross-silo

8

• Multiple parties collaboratively learn global knowledge based
on their private data with similar or complementary features

Distribute the global model
and/or computation tasks

Train locally, and (might)
exchange intermediate results

Return the updates

Federated
Aggregation

1

2

3

4

Privacy Protection Techniques

9

To further satisfy privacy protection requirements, various
privacy protection techniques can be integrated into FL:
• Differential Privacy (DP)
• Homomorphic Encryption (HE)
• Secure Multi-Party Computation (MPC)

Differential Privacy (DP)

10

• The information are perturbed before sharing
• Trade-off between privacy protection and model utility
• Privacy budget allocation

Inject noise

+

+

+

Homomorphic Encryption (HE)

11

• Participants are allowed to perform computations on
encrypted data
• E.g., additively HE: [𝑎] + [𝑏] = [𝑎 + 𝑏]

Server

Client #1 Client #2

Perform federated aggregation on
the encrypted results

Secure Multi-Party Computation (MPC)

• MPC aims to jointly compute a function by multiple
participants while keeping the original inputs private.

Server

Client #1 Client #2

Client #3

Client #1 Client #2 Client #3

MEAN()

= MEAN()

1212

TensorFlow Federated Google

PySyft OpenMined

PaddleFL Baidu

FATE WeBank

FederatedScope Alibaba Group

and more

Federated Learning Platforms

13

FederatedScope

14

• FederatedScope[2] is an easy-to-use FL platform which
employs an event-driven architecture
• FederatedScope provides users with great flexibility to

independently describe the behaviors of different
participants, friendly for research

[2] FederatedScope: A Flexible Federated Learning Platform for Heterogeneity. arXiv preprint, 2022.

https://github.com/alibaba/FederatedScope

Event-driven v.s. Procedural

15

Server

Client #1

Train the received model
based on the local data

Return model updates

Server

Receive the model updates,
and perform aggregation

Client #2

Train the received model
based on the local data

Broadcast the global model

Return model updates

• Take vanilla FedAvg[3] as an example

[3] Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

Event-driven v.s. Procedural

16

Server

Client #1

Train the received model
based on the local data

Return model
updates

Server

Receive the model updates,
and perform aggregation

Server broadcasts model to Clients;
Client #1 receives the model, trains locally, returns model updates;
Client #2 receives the model, trains locally, returns model updates;
Server receives the model updates, preforms aggregation, and sends global model;

Procedural

Client #2

Train the received model
based on the local data

Broadcast the global model

Return model
updates

• Take vanilla FedAvg[3] as an example

Event-driven v.s. Procedural

17

Server

Client #1

Train the received model
based on the local data

Return model
updates

Server

Receive the model updates,
and perform aggregation

Server broadcasts model to Clients;
Client #1 receives the model, trains locally, returns model updates;
Client #2 receives the model, trains locally, returns model updates;
Server receives the model updates, preforms aggregation, and sends global model;

Client #2

Train the received model
based on the local data

Broadcast the global model

Return model
updates

Procedural

Client:
DEFINE handlers:
u When receiving model → Train it on local data and return model updates;
Server:
DEFINE handlers :
u When receiving model updates → Preform aggregation and send global model;

Instantiate Server, Client #1, Client #2; Server broadcasts the global model.

Event-driven

• Take vanilla FedAvg[3] as an example

Event-driven v.s. Procedural

18

Server

Client #1

Train the received model
based on the local data

Return model
updates

Server

Receive the model updates,
and perform aggregation

Server broadcasts model to Clients;
Client #1 receives the model, trains locally, returns model updates;
Client #2 receives the model, trains locally, returns model updates;
Client #1 and Client #2 exchange intermediate results;
Client #1 continues training locally, returns updated model;
Client #2 continues training locally, returns updated model;
Server receives the model updates, preforms aggregation, and sends global model;

Client #2

Train the received model
based on the local data

Broadcast the global model

Return model
updates

Procedural

exchange intermediate results

Client:
DEFINE handlers:
u When receiving model → Train it on local data, send intermediate results to

other clients;
u When receiving intermediate results → continues training locally and return

model updates;
Server:
DEFINE handlers :
u When receiving model updates → Preform aggregation and send global model;

Instantiate Server, Client #1, Client #2; Server broadcasts the global model.

Event-driven

• A simple customization started from FedAvg

System Design of FederatedScope

19

Worker

Server Client

Aggregator Trainer Message

Communicator

Standalone Distributed

contain contain
send/receive send/receive

contain

Monitor

containcontain

Worker Module: Server/Client

20

Worker

Server Client

Aggregator Trainer

contain contain

Monitor

containcontain

• Server/Client own local data and model

• Server/Client need to exchange messages
during the training process

• The behaviors of Server/Client are described
via event-handler pairs

Worker Module: Trainer/Aggregator

21

Worker

Server Client

Aggregator Trainer

contain contain

Monitor

containcontain

• Client performs local training via Trainer;
Server performs aggregation via Aggregator

• Trainer/Aggregator encapsulate the algorithm
details, which are entirely decoupled from the
federated behaviors of Server/Client

Worker Module: Monitor

22

Worker

Server Client

Aggregator Trainer

contain contain

Monitor

containcontain

• Monitor are used to record and report the
training logs and evaluation metrics

• Both client-wise and global results can be
visualized

Communication Module: Communicator

23

Message

Communicator

Standalone Distributed

send/receive send/receive

• Communicator supports the message
exchanging among workers, which
encapsulates the communication details

• Communicator provides a unified interface
for standalone simulation and distributed
deployment

Communication Module: Message

24

Message

Communicator

Standalone Distributed

send/receive send/receive

• The exchanged information among workers
are abstracted as messages

• Receiving different type of messages (i.e.,
events) might trigger different handing
actions (i.e., handler)

Hands-On Practice with FederatedScope

25

Developers can implement vanilla FedAvg with FederatedScope
as following steps:
• Describe behaviors of clients/server via event-handler pairs

nWhen receiving global model -> Perform local training and return updates

Hands-On Practice with FederatedScope

26

Developers can implement vanilla FedAvg with FederatedScope
as following steps:
• Describe behaviors of clients/server via event-handler pairs

nWhen receiving updates -> Save the updates, check aggregation condition
nWhen achieving aggregation goal -> Perform aggregation, and start a training round

or terminate the training

Hands-On Practice with FederatedScope

27

Developers can implement vanilla FedAvg with FederatedScope
as following steps:
• Describe behaviors of clients/server via event-hander pairs

• Specify the details of local training and federated aggregation
n The implementation of trainer is similar to that of centralized training
n Decoupled with the federated behaviors of clients/server

Hands-On Practice with FederatedScope

28

Developers can implement vanilla FedAvg with FederatedScope
as following steps:
• Describe behaviors of clients/server via event-hander pairs

• Specify the details of local training and federated aggregation

• Construct FL course

Hands-On Practice with FederatedScope

29

Developers can implement vanilla FedAvg with FederatedScope
as following steps:
• Describe behaviors of clients/server via event-hander pairs

• Specify the details of local training and federated aggregation

• Construct FL course

FederatedScope has provided rich implementation
of existing FL algorithms, which allows users to
conveniently apply them via easy configuring.

More Advantages of FederatedScope

30

• Asynchronous FL
• Personalization & Multiple Goals
• Cross-backend FL
• Privacy Protection Techniques

Asynchronous FL

31

Asynchronous training strategies are important to balance
the model performance and training efficiency

Asynchronous FL

The unique behaviors of participants in asynchronous FL are
modularized and provided in FederatedScope
• Staleness toleration
• Broadcasting manner
• Client sampling

32

Server

Clients Local Training

Return
updates

… …

Federated AggregationBalance model performance
and training efficiency

Broadcast up-to-date model

Personalization & Multiple Goals

FederatedScope gives participants the right to describe their
behaviors from their respective perspectives:
• Client-specific training configurations
• Diverse local training process
• Different learning goals

33

Cross-backend FL

FederatedScope supports cross-backend FL via message translation:
• Before sharing the messages, participants transform the messages

into the pre-defined backend-independent format
• Once the messages are received, the participants parse the messages

according their running backends

34

Server

Client #3

Client #4

Client #1

Client #2 or

35

• For applying DP in FL, FederatedScope provides:
• plugin operations, such as gradient clipping and noise injecting
• implementation of state-of-the-art algorithms, such as NbAFL[4]

Privacy Protection Techniques

Privacy Protection Techniques

36

• For applying DP in FL, FederatedScope provides:
• plugin operations, such as gradient clipping and noise injecting
• Implementation of state-of-the-art algorithms, such as NbAFL[4]

• Users can combine different behaviors together to
implement more fancy DP algorithms

[4] Federated Learning With Differential Privacy: Algorithms and Performance Analysis. In IEEE TIFS, 2020.

.

Privacy Protection Techniques

• Apply Secret Sharing in FedAvg

3737

Mix the received frames before
sending them to the server;

Split the shared message into
fragments and broadcast to
other clients;

Implementation examples

38

Refer to FederatedScope Playground for more examples

1. Prepare datasets: Developers can conveniently conduct
experiments on the provided dataset

https://try.federatedscope.io/

Implementation examples

39

Refer to FederatedScope Playground for more examples

2. Prepare models: Developers can set up cfg.model.type =
MODEL_NAME to apply a specific model architecture in FL tasks

https://try.federatedscope.io/

Implementation examples

40

Refer to FederatedScope Playground for more examples

3. Task-specific configuration

https://try.federatedscope.io/

Implementation examples

41

Refer to FederatedScope Playground for more examples

4. Enjoy your journey of Federated Learning!

https://try.federatedscope.io/

References

42

[1] General Data Protection Regulation (GDPR). https://gdpr-info.eu

[2] FederatedScope: A Flexible Federated Learning Platform for Heterogeneity. arXiv
preprint, 2022.

[3] Communication-efficient learning of deep networks from decentralized data. In
AISTATS, 2017.

[4] Federated Learning With Differential Privacy: Algorithms and Performance
Analysis. In IEEE TIFS, 2020.

https://gdpr-info.eu/

• Overview

• Personalized Federated Learning

• Federated Graph Learning

• Federated Hyperparameter Optimization

• Privacy Attacks

43

Agenda of Tutorial

Personalized
Federated Learning

44

Outline of PFL

45

• Why Personalized Federated Learninig (PFL)

• Existing PFL Methods

• PFL Hands-On Practice

• PFL Benchmark

Why PFL? Next-Word Prediction Case

46

Local Data

Local Model
Updates

Global
Model

Local Model
What is federated __

learning express insurance

Typical Flow

1. Server selects clients, sends msg

2. Clients learn on private data

3. Clients upload msg (model)

4. Server aggregates msgs

Ideally: IID data

47

Global model: one-for-all

good-for-all
What is federated __

learning express insuranceLocal Data Local Model

Local Model
Updates

Global
Model

Actually: Non-IID Data

48

What is federated __

learning express insurance

Local Model
Updates

Global
Model

Local Data Local Model

Non-IID Data

49

Diverse
Data Generation

User Preference
Usage Frequency

...

X: Federated
Y: Learninig

X: Federated
Y: Express

Non-IID

Ø Marginal Distribution Skew
• common P(Y|X); different P(X)
• P(X|Y); P(Y)
e.g., Users in different regions differ in their vocabularies

Ø Conditional Distribution Skew
• common P(Y); different P(X|Y)
• P(X); P(Y|X)
e.g., Users expect different next words given the same input

Ø Quantity (i.e., size of local data) Skew

Non-IID Data

50

hard to

converge

Global Model Loss

Non-IID Data

51
Client-wise performance

sub-optimal

performance

Ideally: Powerful System Capacity

52

What is federated __

learning express insurance

Local Model
Updates

Global
Model

Local Data Local Model

Actually: Heterogeneous Capacities

53

Actually: Heterogeneous Capacities

54

Computation
Power、Storage

Communication
Bandwidth、QoS

Hard to fully
utilize all data

Sub-optimal
Performance

Diverse

Outline

55

• Why Personalized Federated Learninig (PFL)
• Non-IID Data

• Heterogeous Device Capacities

• Existing PFL Methods

• PFL Hands-On Practice

• PFL Benchmark

Existing PFL Methods

56

Personalized Behaviors

[1] Adaptive personalized federated learning. In arXiv 2020.
[2] Personalized federated learning with first order model optimization. In ICLR 2020.

weights

mixture
Ø pros: explicitly model local-global relationship;

easy-to-implement

Ø cons: prune to be affected by single global model

57

Personalized Behaviors

[3] Parameterized Knowledge Transfer for Personalized Federated Learning. In NeurIPS 2021.
[4] Data-free knowledge distillation for heterogeneous federated learning. In ICML 2021.

① training on private data
public
data

② distilliation on public data

soft
logits

Ø pros: low costs;

flexible model architectures

Ø cons: may require public proxy data;

hard to find optimal ensemble teacher model

58

Personalized Behaviors

[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.
[6] Personalized federated learning with moreau envelopes. In NeurIPS 2020.

local tuning

with para
regularizationØ pros: easy-to-implement;

rich theoretical analysis

Ø cons: prune to be affected by the
sinlge global model

59

Personalized Behaviors

[6] Personalized federated learning with moreau envelopes. In NeurIPS 2020.
[7] Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS 2020.

training

for fast
adaption local tuning

Ø pros: benefit long-tailed clients

Ø cons: high storage & computing costs

60

Personalized Behaviors

[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.
[9] Exploiting Shared Representations for Personalized Federated Learning. In ICML 2021

freeze sub-
modules

Ø pros: fine-grained personalization;
low costs

Ø cons: hard to find optimal sub-model partititon

61

Existing PFL Methods

62

Personalized Behaviors

[10] An efficient framework for clustered federated learning. In NeurIPS 2020.
[11] Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints. In TNNLS 2020

cluster i cluster j...

Ø pros: group-wise relationship modeling

Ø cons: high storage, computing,
communication costs

63

Personalized Behaviors

[12] Federated multi-task learning. In NeurIPS 2017.
[13] Federated multi-task learning under a mixture of distributions. In NeurIPS 2021.

task-relationship

modeling

Ø pros: client-wise relationship modeling

Ø cons: high storage, computing,
communication costs

64

Personalized Behaviors

[14] Tifl: A tier-based federated learning system. In ACM HPDC 2020.

Ø pros: easy-to-implement;
improved convergence

Ø cons: may sacrifice long-tailed clients

65

Divide clients

into tiers

Sample

with prior

Outline

66

• Why Personalized Federated Learninig (PFL)

• Existing PFL Methods

• PFL Hands-On Practice

• PFL Benchmark

From FedAvg to FedBN
Ø FedBN [8]

• Locally maintain model sub-parameters
that encode local data knowledge

• e.g. BN layers

[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021. 67

freeze sub-
modules

From FedAvg to FedBN
Ø FedBN [8]

• Locally maintain model sub-parameters
that encode local data knowledge

• e.g. BN layers

Ø We need to carefully filter out the model
sub-parameters during FL courses

• client local training

• server aggregation

68

freeze sub-
modules

[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.

FedBN in FederatedScope
Ø Local model sub-parameter via FS

• single-line configuration

69

freeze sub-
modules

[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.

FedBN in FederatedScope
Ø Local model sub-parameter via FS

• single-line configuration

• auto filtering during FL processes

70[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.

From FedAvg to Ditto
Ø Ditto [5]

• maintain both local & global models -->
improved fairness & robustness

• local model is trained with para regularization

71[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

local tuning

with para
regularization

From FedAvg to Ditto
Ø Ditto [5]

• maintain both local & global models -->
improved fairness & robustness

• local model is trained with para regularization

Ø We need to

• maintain client-specific model objects

• (client) trains global model as FedAvg does

• (client) trains local model with regularization

72[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

local tuning

with para
regularization

Ditto in FederatedScope

73

Ø Ditto attribute customization

• maintain client-specific models

Ditto in FederatedScope

74

Ø Ditto behavior customization

• incorporate parameter regularization into the local training

Customization with FS-Trainer

Ø Decoupled attributes & behaviors

75

Customization with FS-Trainer

Ø Decoupled attributes & behaviors

Ø Attribute Customization: Context
• self-management life-cycle
• built-in models, optimizers, etc.,

76

FS-Trainer-Context
Ø Context Variables

• self-management life-cycle

77

Implement Ditto via FS - Attribute

78[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

Customization with FS-Trainer

Ø Decoupled attributes & behaviors

Ø Attribute Customization: Context
• self-management life-cycle
• built-in models, optimizers, etc.,

Ø Behavior Customization
• unified high-level routine APIs
• pluggable hook functions

79

FS-Trainer-Hooks
Ø Point-in-time based pluggable hooks

• {fit|epoch|batch}
• {start|end|forward|backward}

Ø Hooks can be flexibly {insert, modify, replace}

80

Implement Ditto via FS - Behavior

81[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

Implement Ditto via FS - Behavior

82[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

PFL Implementation via FS

FS provides flexible behavior customization

• Inter-Clients/Server Customization
• event-driven

• message/handler from own view

• Intra-Clients/Server Customization

• modular Trainer object

• clients/server distinct

83

Outline

84

• Why Personalized Federated Learninig (PFL)

• Existing PFL Methods

• PFL Hands-On Practice

• PFL Benchmark

PFL Benchmark – Implementations
ArXiv: pFL-Bench: A Comprehensive Benchmark for Personalized
Federated Learning

Ø Fruitful pluggable hooks and sub-routines
Ø 20+ competitive PFL baseline implementations

Codes: https://github.com/alibaba/FederatedScope/tree/master/benchmark/pFL-Bench 85

https://arxiv.org/abs/2206.03655
https://github.com/alibaba/FederatedScope/tree/master/benchmark/pFL-Bench

PFL Benchmark – Datasets

pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning
86

https://arxiv.org/abs/2206.03655

PFL Benchmark – End2End Evaluation
Ø Server/Clients side

monitoring

• Fruitful result
aggregation manners
• global avg
• global weighted avg
• individual

• Fruitful metrics
• generalization: loss, acc, ...
• fariness: std, quantiles, ...
• system efficiency: flops, ...

87

PFL Benchmark – End2End Evaluation
Ø Server/Clients side

monitoring

Ø Fruitful result
aggregation manners
• global avg
• global weighted avg
• individual

• Fruitful metrics
• generalization: loss, acc, ...
• fariness: std, quantiles, ...
• system efficiency: flops, ...

88

PFL Benchmark – End2End Evaluation
Ø Server/Clients side

monitoring

Ø Fruitful result
aggregation manners
• global avg
• global weighted avg
• individual

Ø Fruitful metrics
• generalization: loss, acc, ...
• fariness: std, quantiles, ...
• system efficiency: flops, ...

89

PFL Benchmark – Generalization

: average weighted by local data size

: accuracy of un-participated clients

: participation generalization gap

Metric

90

• Bold & underlined: best & second-best results
among all methods

• Red & blue: best & second-best results for
original methods w/o plug-ins “-”

PFL Benchmark – Generalization
Metric

Original methods w/o plug-in“-”

• No dominant one

• Good intra-client
generalization with PFL

: average weighted
by local data size

: accuracy of un-
participated clients

: participation
generalization gap

91

PFL Benchmark – Generalization

Huge potential in

• PFL combination

: average weighted
by local data size

: accuracy of un-
participated clients

: participation
generalization gap

92

Metric

PFL Benchmark – Generalization

Huge potential in

• PFL combination

• inter-client generalization

: average weighted
by local data size

: accuracy of un-
participated clients

: participation
generalization gap

93

Metric

PFL Benchmark – Generalization

Huge potential in

• PFL combination

• inter-client generalization

• text/graph datasets

: average weighted
by local data size

: accuracy of un-
participated clients

: participation
generalization gap

94

Metric

PFL Benchmark – Fairness

• Bold & underlined: best & second-best results
among all methods

• Red & blue: best & second-best results for
original methods w/o plug-ins “-”

: equally-weighted average

: std of client-wise accuracy

: bottom (90-th) accuracy over all clients

95

Metric

PFL Benchmark – Fairness

: equally-
weighted average

: std of client-
wise accuracy

: bottom (90-th)
accuracy over all clients

• Bias in existing evaluation

• Good bottom acc with PFL

96

Metric

PFL Benchmark – Fairness

: equally-
weighted average

: std of client-
wise accuracy

: bottom (90-th)
accuracy over all clients

• Huge potential in domain-

specific fairness study

97

Metric

PFL Benchmark – System Efficiency

• PFL pays large
additional costs

• FT & FedOpt
improve the
convergence speeds

98

Total Flops
Communication Bytes
Convergence Round

Metric

Reference of PFL
[1] Adaptive personalized federated learning. In arXiv 2020.

[2] Personalized federated learning with first order model optimization. In ICLR 2020.

[3] Parameterized Knowledge Transfer for Personalized Federated Learning. In NeurIPS 2021.

[4] Data-free knowledge distillation for heterogeneous federated learning. In ICML 2021.

[5] Ditto: Fair and robust federated learning through personalization. In ICML 2021.

[6] Personalized federated learning with moreau envelopes. In NeurIPS 2020.

[7] Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. In NeurIPS 2020.

[8] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization. In ICLR 2021.

[9] Exploiting Shared Representations for Personalized Federated Learning. In ICML 2021

[10] An efficient framework for clustered federated learning. In NeurIPS 2020.

[11] Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints. In TNNLS 2020

[12] Federated multi-task learning. In NeurIPS 2017.

[13] Federated multi-task learning under a mixture of distributions. In NeurIPS 2021.

[14] Tifl: A tier-based federated learning system. In ACM HPDC 2020.

[15] pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning. In arXiv 2022
99

• Overview

• Personalized Federated Learning

• Federated Graph Learning

• Federated Hyperparameter Optimization

• Privacy Attacks

100

Agenda of Tutorial

Federated Graph
Learning (FGL)

101

FGL Is Ubiquitous

102

Healthcare Anti-money laundering Recommender system

Image source: Subgraph federated learning with
missing neighbor generation. In NeurIPS 2021.

Bank A

A1

B1
B2

C1

C3

C2

Bank B
B1

A1
B2

B3 B4C1

Bank C

A1

C1C3 C2

C4

B2
Transactions

Transactions

Transactions

https://proceedings.neurips.cc/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf

FGL Is Ubiquitous

103

Molecule-related research and drug discovery

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦% 𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%

FGL Scenario (1)

104

Healthcare

q Node classification
• Each client holds a subgraph

• Clients have no common node

• Inter-subgraph edges are missing

Image source: Subgraph federated learning with
missing neighbor generation. In NeurIPS 2021.

https://proceedings.neurips.cc/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf

FGL Scenario (2)

105

q Node classification
• Each client holds a subgraph

• Clients have common nodes

• Intra-subgraph edges may be missing

Anti-money laundering
Bank A

A1

B1
B2

C1

C3

C2

Bank B
B1

A1
B2

B3 B4C1

Bank C

A1

C1C3 C2

C4

B2
Transactions

Transactions

Transactions

FGL Scenario (3)

106

q Link prediction
• Each client holds a bipartite graph

• Clients have common node

• Inter-subgraph edges are missing

Recommender system

FGL Scenario (4)

107
Molecule-related research and drug discovery

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦% 𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%
q Graph classification

• Each client holds a subset of graphs

• Different graph distributions

• Different feature spaces

• Different tasks of interest

Challenges in FGL

108

q Non-IIDness
• The same node in different clients may have different neighbors

Anti-money laundering

Bank A

A1

B1
B2

C1

C3

C2

Bank B
B1

A1
B2

B3 B4C1

Bank C

A1

C1C3 C2

C4

B2
Transactions

Transactions

Transactions

Challenges in FGL

109

q Non-IIDness
• The same node in different clients may have different neighbors

• Models have to associate different patterns with the same label

Laundering

Anti-money laundering

Laundering

Laundering
Bank A

A1

B1
B2

C1

C3

C2

Bank B
B1

A1
B2

B3 B4C1

Bank C

A1

C1C3 C2

C4

B2
Transactions

Transactions

Transactions

Challenges in FGL

110

Molecule-related research and drug discovery

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦% 𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%q More general heterogeneity
• Different feature spaces

• Different tasks of interest

Challenges in FGL

111

Molecule-related research and drug discovery

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦% 𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%

𝑦!, 𝑦", 𝑦#, 𝑦$, 𝑦%q More general heterogeneity
• What knowledge can be shared?

• How to optimize the shared model?

Study FGL with FederatedScope-GNN (FS-G) [1]

112

q Datasets
• Very comprehensive in terms of tasks and types of heterogeneity

q GNN models
• Out-of-the-box GNNs and Client-specific neural architecture

q FGL Algorithms
• FL participants exchange heterogeneous information and have rich behaviors

Creating FGL Datasets

113

q Community-based splitters
• Apply community detection algorithms to partition a graph into several clusters

• E.g., Louvain [2] and METIS [3]

• Assign clusters to clients, optionally balancing their #node
• Nodes in the same client are densely connected

Image source: Community Detection Algorithms. In TDS.

Client1

Client2

Client3

https://towardsdatascience.com/community-detection-algorithms-9bd8951e7dae

Creating FGL Datasets

114

q Randomness-based splitters
• The node set of original graph is randomly split into N subsets

• Subgraph of each client is deduced from its nodes

q Metadata-based splitters
• E.g., split a citation network by venue

• E.g., split a user-item interaction network by user

Creating FGL Datasets

115

q Instance space-based splitters
• E.g., sort all molecular graphs by their scaffold, and then each client is assigned

with a segment of the sorted list

• Useful for creating covariate shift

Image source: Introduction to scaffold splitting. In Oloren Blog Home.

PCA chemical space of two sets
using random v.s. scaffold split

https://oloren.ai/blog/scaff_split.html

Creating FGL Datasets

116

q Label space-based splitters
• E.g., in relation prediction task defined on a knowledge graph,

triplets are split into clients by latent dirichlet allocation (LDA) [4]

• This creates label distribution skew

q Task-based splitters
• E.g., one client has molecules labeled with their toxicity, another

client has molecules labeled with their excitation energy.

• This creates federated hetero-task learning [5, 6]

Creating FGL Datasets

117

FS-G [1] provides off-the-shelf FGL datasets.

Creating FGL Datasets

118

Example: construct a FGL node
classification task with 5 clients
from citation network Cora.

Study FGL with FederatedScope-GNN (FS-G) [1]

119

q Datasets
• Very comprehensive in terms of tasks and types of heterogeneity

q GNN models
• Out-of-the-box GNNs and Client-specific neural architecture

q FGL Algorithms
• FL participants exchange heterogeneous information and have rich behaviors

Graph Neural Networks (GNN)

120

q Given a graph 𝐺 𝑉, 𝐸
• 𝑉 is the node set, and 𝐸 = 𝑖, 𝑗 𝑖, 𝑗 ∈ 𝑉 is the edge set

• Each node is associated with a 𝑘-dimensional feature vector; all node
features are denoted by 𝑋 ∈ ℜ & ×(

• Adjacency 𝐴 has 𝐴)* = 1 if 𝑖, 𝑗 ∈ 𝐸, otherwise 𝐴)* = 0

q What GNN does
• Generate node embeddings

• Encode both node features and graph structure
Image source: Machine Learning with
Graphs. In Stanford CS224W.

http://web.stanford.edu/class/cs224w/

Graph Neural Networks (GNN)

121

q Key idea behind GNN
• Generate node embeddings by aggregating information from

neighborhood

• Use neural networks to parameterize the aggregation procedure

Image source: Machine Learning with Graphs. In Stanford CS224W.

http://web.stanford.edu/class/cs224w/

Graph Neural Networks (GNN)

122

q General form

• Let ℎ)
+ denote the embedding of node 𝑖 at the 𝑙-th layer, where

ℎ)
, = 𝑋) is defined as the raw node feature

• 𝛾 + and 𝜙 + are neural networks (e.g., MLP) for feature mapping

• “agg” is an aggregation operator, e.g., elementwise mean/min/max

ℎ!
"#$ = 𝛾 " ℎ!

" , agg%∈' ! 𝜙 " ℎ!
" , ℎ%

"

What is in the box?

ModelZoo of FederatedScope-GNN

123

q Out-of-the-box GNNs
• Implemented based on PyG

• GCN [7], GIN [8], GAT [9], GraphSage [10], GPRGNN [11], etc.

• Various readout choices, e.g., elementwise min/mean/max

Example: Apply GraphSage
to node-level task.

Example: Apply GCN
to graph-level tasks.

ModelZoo is Extendable

124

q Contribute and use novel GNN model

Implement your model based on PyG and
put the .py in contrib/model/example.py

Register this model in FS-G

ModelZoo is Extendable

125

q Contribute and use novel GNN model

Implement your model based on PyG and
put the .py in contrib/model/example.py

Register this model in FS-G

Then we could use it by
specifying in the .yaml

Client-specific Neural Architecture

126

q Handling heterogeneity
• Client-specific feature encoder

• Client-specific output layer(s)

• Shared GNN layers

Server aggregate

Atom&bond encoder

GNN

Readout

Linear Linear…

Toxicity? DFT?

Atom&bond encoder

GNN

Readout

Linear Linear…
DFT?Inhibits HIV?

……

Readout

GNN

Client-specific Neural Architecture

127

q Handling heterogeneity
• Client-specific feature encoder

• Client-specific output layer(s)

• Shared GNN layers

Then only the parameters of GNN layers
would be exchanged and aggregated

Users can further
specify client-wise
configurations

Capability of Handling Hetero-task

128

q Empirical study on Graph-DT [6]
• 16 clients, each has a graph dataset picked from TUDataset/MoleculeNet

• All are molecular graphs, but each dataset has specific atom attributes and
tasks

• Clients share the MPNN layers but have client-specific atom encoders and
output layers

Average improvement ratio
w.r.t. "isolated training" baseline

Study FGL with FederatedScope-GNN (FS-G) [1]

129

q Datasets
• Very comprehensive in terms of tasks and types of heterogeneity

q GNN models
• Out-of-the-box GNNs and Client-specific neural architecture

q FGL Algorithms
• FL participants exchange heterogeneous information and have rich behaviors

AlgoZoo of FederatedScope-GNN

130

q A representative FGL algorithm: FedSage+ [12]
• Attempts to mend the graph by generating missing neighbor(s)

• Mainly focuses on this scenario:

• Each client holds a subgraph
• Clients have no common node
• Inter-subgraph edges are missing

Image source: Subgraph federated learning with
missing neighbor generation. In NeurIPS 2021.

https://proceedings.neurips.cc/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf

Heterogeneous Information and Rich Behaviors

1. Upload neighbor generator
and node embeddings

1
3

2

?
?

v.s.

1
2

3

−Min(|| ||

1 2
4

3Min(|| − ||

Embed nodes and pre-train
neighbor generator locally

131

1. Upload neighbor generator
and node embeddings

1
3

2

?
?

v.s.

1
2

3

−Min(|| ||

Find the most similar node
and calculate gradients

1 2
4

3Min(|| − ||

Embed nodes and pre-train
neighbor generator locally

2. Broadcast neighbor generator
and node embeddings

Heterogeneous Information and Rich Behaviors

132

1. Upload neighbor generator
and node embeddings

1
3

2

?
?

v.s.

1
2

3

−Min(|| ||

Find the most similar node
and calculate gradients

1 2
4

3Min(|| − ||
3. Upload gradients

Embed nodes and pre-train
neighbor generator locally

2. Broadcast neighbor generator
and node embeddings

Heterogeneous Information and Rich Behaviors

133

1. Upload neighbor generator
and node embeddings

1
3

2

?
?

v.s.

2. Broadcast neighbor generator
and node embeddings

1
2

3

−Min(|| ||

Find the most similar node
and calculate gradients

1 2
4

3Min(|| − ||
3. Upload gradients

4. Dispatch gradients

Embed nodes and pre-train
neighbor generator locally

Heterogeneous Information and Rich Behaviors

134

1. Upload neighbor generator
and node embeddings

1
3

2

?
?

v.s.

2. Broadcast neighbor generator
and node embeddings

1
2

3

−Min(|| ||

Find the most similar node
and calculate gradients

1 2
4

3Min(|| − ||
3. Upload gradients

4. Dispatch gradients

Embed nodes and pre-train
neighbor generator locally

FL participants exchange heterogeneous
information and have rich behaviors!

Heterogeneous Information and Rich Behaviors

135

Implementing FGL Algorithms in FS-G

136

q Event-driven framework
• Define various messages regarding the exchanged information

• Frame the algorithmic procedure into multiple event handlers

How we implement FedSage+ in the AlgoZoo of FS-G.

Empirical Study Using AlgoZoo of FS-G

137

q Compare FedSage+ with GraphSage
• Identical neural architecture, but

• GraphSage is federally learned by FedAvg without graph mending

Mean test accuracy ± standard deviation

Future Directions

138

q Subgraph completion
• How to borrow information from other subgraphs in a privacy-preserving manner?

q Self-supervised learning in the FL setting
• Non-IIDness issue is exacerbated in existing observations

q Federated molecular property prediction
• Both molecules and their labels can be private

[1] FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for
Federated Graph Learning. In KDD 2022.
[2] Fast unfolding of communities in large networks. In Journal of Statistical Mechanics:
Theory and Experiment 2008.
[3] Multilevel k-way hypergraph partitioning. In VLSI design 2000.
[4] Latent dirichlet allocation. In JMLR 2003.
[5] Federated graph classification over non-iid graphs. In NeurIPS 2021.
[6] A Benchmark for Federated Hetero-Task Learning. In arXiv 2022.
[7] Semi-Supervised Classification with Graph Convolutional Networks. In ICLR 2017.
[8] How Powerful are Graph Neural Networks?. In ICLR 2018.
[9] Graph Attention Networks. In ICLR 2018.
[10] Inductive representation learning on large graphs. In NeurIPS 2017.
[11] Adaptive Universal Generalized PageRank Graph Neural Network. In ICLR 2020.
[12] Subgraph federated learning with missing neighbor generation. In NeurIPS 2021.

References of FGL

139

• Overview

• Personalized Federated Learning

• Federated Graph Learning

• Federated Hyperparameter Optimization

• Privacy Attacks

140

Agenda of Tutorial

Federated Hyperparameter
Optimization (FedHPO)

141

Hyperparameter Optimization (HPO)

142

q Problem definition

q Black-box function 𝑓
• Domain

• i.e., search space
• e.g., learning rate ∈ Λ! = 0.001, 0.1
• e.g., batch size ∈ Λ" = 16, 32, 64

• Function evaluation
• Executing the corresponding algorithm with the

given hyperparameter configuration 𝜆
• Producing the output, e.g., validation loss

min
4∈5!×⋯×5"

𝑓 𝜆

Hyperparameter Optimization (HPO)

143

q Problem definition

q Black-box function 𝑓
• Domain

• i.e., search space
• e.g., learning rate ∈ Λ! = 0.001, 0.1
• e.g., batch size ∈ Λ" = 16, 32, 64

• Function evaluation
• Executing the corresponding algorithm with the

given hyperparameter configuration 𝜆
• Producing the output, e.g., validation loss

min
4∈5!×⋯×5"

𝑓 𝜆

Continuous, ordinal,
categorical, etc.

Non-analytic, non-
convex, non-smooth,
time-consuming

HPO: A Black-box Optimization View

144

q Problem definition

q Black-box function 𝑓
• Domain

• i.e., search space
• e.g., learning rate ∈ Λ! = 0.001, 0.1
• e.g., batch size ∈ Λ" = 16, 32, 64

• Function evaluation
• Executing the corresponding algorithm with the

given hyperparameter configuration 𝜆
• Producing the output, e.g., validation loss

min
4∈5!×⋯×5"

𝑓 𝜆

𝜆8 𝑓 𝜆8

HPO: A Black-box Optimization View

145

q Problem definition

q Black-box function 𝑓
• Domain

• i.e., search space
• e.g., learning rate ∈ Λ! = 0.001, 0.1
• e.g., batch size ∈ Λ" = 16, 32, 64

• Function evaluation
• Executing the corresponding algorithm with the

given hyperparameter configuration 𝜆
• Producing the output, e.g., validation loss

min
4∈5!×⋯×5"

𝑓 𝜆

𝜆9 𝑓 𝜆9

HPO: A Black-box Optimization View

146

q Problem definition

q Black-box function 𝑓
• Domain

• i.e., search space
• e.g., learning rate ∈ Λ! = 0.001, 0.1
• e.g., batch size ∈ Λ" = 16, 32, 64

• Function evaluation
• Executing the corresponding algorithm with the

given hyperparameter configuration 𝜆
• Producing the output, e.g., validation loss

min
4∈5!×⋯×5"

𝑓 𝜆

𝜆: 𝑓 𝜆:

HPO: Multi-fidelity Strategy

147

q Exact function evaluation is unaffordable

q Low-fidelity function evaluation

• E.g., training fewer epochs, on a subset, etc.

• Balance precision and efficiency

q Function evaluation 𝑓 𝜆, 𝑏
• Fidelity domain 𝑏 ∈ 𝐵!×⋯×𝐵-

• e.g., #epoch ∈ B! = 50, 500
• e.g., fraction of used training set ∈ B" = 25%, 50%, 100%

• Executing the algorithm with the given hyperparameter
configuration 𝜆 and fidelity configuration 𝑏

𝜆, 𝑏 𝑓 𝜆, 𝑏

Study FedHPO with FederatedScope

148

qApply existing HPO package to FederatedScope
• Compatible and easy-to-use

q Implement and apply multi-fidelity HPO
• Successive halving algorithm (SHA) [1]

q Implement and apply FedHPO methods
• FedEx [2] and FedEx wrapped by SHA

q FedHPO benchmark
• Design, Features, and Usage of FedHPO-B [3]

Encapsulation of FederatedScope

149

𝜆: 𝑓 𝜆:

FederatedScope

HPO package
Users instantiate an

HPO agent
provided by the

HPO toolkit to seek
optimal config

Each trial
instantiates an FL

runner provided by
FederatedScope to
generate feedback

Utilizing Emukit

150

Declare search space

Apply Gaussian Process (GP) model [4]

Declare the target function, i.e.,
executing the FL algorithm
with a given learning rate

https://emukit.github.io/

Utilizing SMAC

151

Declare the target function,
i.e., executing the FL
algorithm with a given
learning rate, weight decay
coefficient, dropout rate.

https://automl.github.io/SMAC3/main/index.html

Utilizing SMAC

152

Declare search space

Bayesian optimization
with random forest
model [5]

https://automl.github.io/SMAC3/main/index.html

Study FedHPO with FederatedScope

153

q Apply existing HPO package to FederatedScope
• Compatible and easy-to-use

q Implement and apply multi-fidelity HPO
• Successive halving algorithm (SHA) [1]

q Implement and apply FedHPO methods
• FedEx [2] and FedEx wrapped by SHA

q FedHPO benchmark
• Design, Features, and Usage of FedHPO-B [3]

Successive Halving Algorithm for HPO

154

q Iterative procedure
• Initiate with 𝑛 candidate configs

• In 𝑖-th stage, evaluate each config with 𝑟) resource

• The best !
.

candidate configs are promoted into the next stage

• Repeat these steps until only one config remaining

Motivation of SHA

155

stage1 stage2 stage3

Optimal config

#config

resource

More promising configs
are evaluated with more
resources!

Implementation in FederatedScope

156

Evaluate all candidates
of current stage

Update the candidates
w.r.t. current evaluation
results

Implementation in FederatedScope

157

In PBT [6], replace
this by checking
improvements of
performances

Let the survived
candidates start FL
course from their
corresponding latest
checkpoints

Choice of Fidelity Dimension in SHA

158

q Training rounds v.s. Client sampling rate
• Train GNN by FedAvg on PubMed

• Apply SHA to optimize the hyperparameters

• The rank of searched configʹs test accuracy (the smaller, the better)

Study FedHPO with FederatedScope

159

q Apply existing HPO package to FederatedScope
• Compatible and easy-to-use

q Implement and apply multi-fidelity HPO
• Successive halving algorithm (SHA) [1]

q Implement and apply FedHPO methods
• FedEx [2] and FedEx wrapped by SHA

q FedHPO benchmark
• Design, Features, and Usage of FedHPO-B [3]

Uniqueness of FedHPO

160

q New hyperparameter dimensions

𝜆, 𝑏 𝑓 𝜆, 𝑏

Server-side:
e.g., learning rate in FedOPT

Broadcast 𝜃)

Client-side:
e.g., local update steps,
learning rate, etc.

……

𝜃$
)#$ 𝜃'

)#$

Client1 ClientN

𝜃) Local update 𝜃$
)#$

Uniqueness of FedHPO

161

q New fidelity dimensions

𝜆, 𝑏 𝑓 𝜆, 𝑏……

Sample a fraction of clients for
training in each round

Uniqueness of FedHPO

162

q Concurrent exploration

𝜆, 𝑏 𝑓 𝜆, 𝑏
……Client1 ClientN

𝜃) Local update 𝜃*
)#$ Evaluate 𝑓! 𝜆!𝜆!

Uniqueness of FedHPO

163

q Concurrent exploration

𝜆, 𝑏 𝑓 𝜆, 𝑏

……Client1 ClientN

𝑓$ 𝜆$𝜆$ 𝜆'𝑓' 𝜆'

……

Uniqueness of FedHPO

164

q One-shot optimization

𝜆, 𝑏 𝑓 𝜆, 𝑏
Broadcast 𝜃)

……

𝜃$
)#$ 𝜃'

)#$

Client1 ClientN

Function evaluation
means execution of
FL training, which is
expensive!

FedHPO methods

165

q FedEx: a very recent and representative work
• Make concurrent exploration for client-side hyperparameters

• Can be wrapped by traditional HPO methods, e.g., SHA
• For optimizing the server-side hyperparameters
• For optimizing the hyperparameters of FedEx

Image source: Federated hyperparameter tuning: Challenges, baselines, and connections to weight-sharing. In NeurIPS 2021.

https://arxiv.org/abs/2106.04502

Implementation in FederatedScope

166

q FedEx: a very recent and representative work
• Introducing additional behaviors for server and client classes

• Allowing trainer class to make validation during local updates

Does Concurrent Exploration work?

167

q Comparing Wrapped FedEx to the corresponding wrapper

Study FedHPO with FederatedScope

168

q Apply existing HPO package to FederatedScope
• Compatible and easy-to-use

q Implement and apply multi-fidelity HPO
• Successive halving algorithm (SHA)

q Implement and apply FedHPO methods
• FedEx and FedEx wrapped by SHA

q FedHPO benchmark
• Design, Features, and Usage of FedHPO-B

FedHPO-B: FedHPO Benchmark Suite [3]

169

FedHPO-B: Efficiency
q Tabular mode

• Evaluating functions by looking up tables

• Viable only for discrete search space

q Surrogate mode
• Evaluating functions via model inference

• Accuracy of @𝑓 𝜆, 𝑏 matters

q Raw mode
• Standalone simulation avoids communication

• Execution time is meaningless

Common issue: how
to acquire the
execution time of
function evaluation

170

FedHPO-B: Efficiency
q System model

• Configurable

• Model parameters collected from realistic scenarios are provided

171

FedHPO-B: Comprehensiveness
q FedHPO-B provides various FedHPO tasks

172

FedHPO-B: Extensibility
q FedHPO-B is developed based on FederatedScope

• Splitter: standalone dataset à federated dataset

• Event-driven framework with customizable messages

q A general view to unify many FedHPO methods

173

Empirical Study based on FedHPO-B
q How traditional HPO methods perform in the FL setting

174

Future Directions

175

q Personalized FedHPO
• Non-IIDness might lead to different optimal hyperparameter configs

q Byzantine-resilient FedHPO methods
• Malicious contribute noisy or even bad results of function evaluations

q A more realistic cross-silo setting
• Cooperation and competition

[1] Hyperband: A novel bandit-based approach to hyperparameter
optimization. In JMLR 2017.
[2] Federated hyperparameter tuning: Challenges, baselines, and
connections to weight-sharing. In NeurIPS 2021.
[3] FedHPO-B: A Benchmark Suite for Federated Hyperparameter
Optimization. In arXiv 2022.
[4] SMAC3: A Versatile Bayesian Optimization Package for
Hyperparameter Optimization. In J. Mach. Learn. Res. 2022.
[5] Sequential model-based optimization for general algorithm
configuration. In ICLIO 2011.
[6] Population Based Training of Neural Networks. In arXiv 2017.

References of FedHPO

176

• Overview

• Personalized Federated Learning

• Federated Graph Learning

• Federated Hyperparameter Optimization

• Privacy Attacks

177

Agenda of Tutorial

Privacy Attacks

178

Threats in Federated Learning

179[1] Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives. Cybersecur. 2022.

Privacy Attack

180

Privacy Attack:
• From the learning course of FL, infer the sensitive information

related to clients’ private data

• Understanding and applying privacy attacks on FL

is an effective and intuitive way to detect/prevent

the privacy leakage during FL course!

• Other attacks are also important but not FL-

specific. More works needed…

Preventing the privacy leakage is one of the important requirements of FL!

Overview of Privacy Attack

Action Type • Active Attack
• Passive Attack

Privacy Attack

• Membership Inference Attack
• Property Inference Attack
• Class Representative Attack
• Training Data/Label Inference

Target

181

Overview of Privacy Attack

Action Type • Active Attack
• Passive Attack

Privacy Attack

• Membership Inference Attack
• Property Inference Attack
• Class Representative Attack
• Training Data/Label Inference

Target

182

Attack Action Type

Passive Attack:
Attacker:

• Honest-but-curious
• Steal the private information

meanwhile not violating the FL
protocols

Attacker follows
the FL protocols

Invisible!

Hard to Detect!

183

Attack Action Type

Active Attack:
Attacker:

• Malicious
• Steal the private information by

violating the FL protocols
• Change loss function, gradients,

model updates, training data

Change the FL
Messages

184

Overview of Privacy Attack

Action Type • Active Attack
• Passive Attack

Privacy Attack

• Membership Inference Attack
• Property Inference Attack
• Class Representative Attack
• Training Data/Label Inference

Target

185

Membership Inference Attack

186

• Goal: Infer whether a specific data instance exists in other
clients' private datasets
• Attacker Role: Client or Server
• Example:

Whether Alice is in
other hospitals’
diabetes dataset?

Membership Inference Attack

187

GradAscent [2]:
Goal: Infer whether target data x in other clients’ private dataset.

𝑊⟵𝑊+ 𝛾 01"02

𝑊⟵𝑊− 𝛾 01
02

𝑊⟵𝑊− 𝛾 01
02

At t-th round:

Active Attack

[2] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning. IEEE Symposium on Security and Privacy 2019

Membership Inference Attack

188

GradAscent [2]:

𝐿+

Round

𝐿+

Round

x in other clients’
private datasets

x not in other clients’
private datasets

t t

Sudden drop

Membership Inference Attack

189

Running GradAscent in FederatedScope:
• Configuration (insert these lines into the current file):

• The command to run the example attack on Femnist Dataset with
FedAvg:

attack:
attack_method: GradAscent
attacker_id: 5
inject_round: 0

Malicious attacker id

The round to run the gradient ascent on the target dataset.

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/gradient_ascent_MIA
_on_femnist.yaml

Membership Inference Attack

190

• Running Result:

Sudden drop

Property Inference Attack

191

• Goal: Infer dataset properties
• Properties:

• Possibly sensitive
• May not belong to the feature set

• When batch size > 1:
• Whether the training batch at this round contain a certain property value

• Attacker Role: Server

Property Inference Attack

192

Example:
• FL task: whether wearing glasses?
• Additional sensitive properties: Gender

Whether the training batch of client-2 in
this round contain female samples?Training batch:

Property Inference Attack

193

PassivePIA [2]:

[2] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning. IEEE Symposium on Security and Privacy 2019.

Attacker:
• Role: Server
• Prior Knowledge:

• Auxiliary dataset (to be used after each batch)
Feature Label Property

Passive Attack

Auxiliary Dataset

Property Inference Attack

194

PassivePIA [2]:
• Create the training dataset for property classifier
• Feature: Model updates/gradients
• Label: Property

• Train the property classifier

• Infer the property on the collected model updates/gradients during FL

Property Inference Attack

195

PassivePIA: Create the training dataset for property classifier:

0

1

0

Feature Label Property

1

0

Model updates/Gradients Property

Data batches from auxiliary data

0

0

0

Feature Label Property

At each round:
Calculate the model updates/gradients

based on global model at last round

Property Inference Attack

196

Running PassivePIA in FederatedScope on synthetic dataset:
• Synthetic dataset:

Property Inference Attack

197

Running PassivePIA in FederatedScope on synthetic dataset:
• Configuration (insert these lines into the current file):

• The command to run the example attack on Synthetic Dataset with
FedAvg:

• Running Result:

attack:
attack_method: PassivePIA
classifier_PIA: svm

The type of property classifier

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/PIA_toy.yaml

Training Data/Label Inference Attack

198

• Goal: Reconstruct private training samples from
intermediate information transmitted during FL
• Attacker Role: Server

Client 1

Client 2

Client 3

Training Data/Label Inference Attack

199

• DLG [4], iDLG [5], InvertGradient [6]

∆𝑊

Global model

Parameter updates ∆𝑊,

Gradient

Updates match: L = dis(∆𝑊, ∆𝑊,)

Dummy data 𝑥 (one for each training data point in the batch)

𝜕𝐿/𝜕𝑥

[4] Deep leakage from gradients. NeurIPS 2019.
[5] idlg: Improved deep leakage from gradients[J]. arXiv preprint, 2020.
[6] Inverting gradients-how easy is it to break privacy in federated learning?. NeurIPS 2020.

Passive Attack

Training Data/Label Inference Attack

200

Running DLG in FederatedScope:
• Configuration:

• The command to run the example attack on FEMNIST with FedAvg:

attack:
attack_method: DLG
max_ite: 500
reconstruct_lr: 0.1

Maximum iteration

Learning rate of the optimization

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/reconstruct_fedavg_
opt_on_femnist.yaml

201

Training Data/Label Inference Attack

Class Representative Attack

202

• Goal: Infer representative samples of a specific class
• Attacker Role: Client

Class A, Class B

Class B, Class C

Class A, Class D

• The representative
samples of Class C
and Class D？

The client has data that only covers
partial class labels, and is curious about
information related to other classes!

Class Representative Attack

203

GANAttack [3]
• Attacker
• Hold and update a local GAN:

• Generate data that classified as target label by the global model
• Inject the mislabeled data (with the target label):

• Reveal more label related information by amplifying the impact
of training data from other clients with the target label

[3] Deep models under the GAN: information leakage from collaborative deep learning. CCS. 2017.

Active Attack

Class Representative Attack

204

GANAttack [3]
Class A, Class B

Class B, Class C

Local training

Parameter updates

Global model

discriminator generator

Global model

Copy
parameter

Victim Client

Update
discriminator

Class Representative Attack

205

GANAttack [3]
Class A, Class B
Target at attacking Class C

Class B, Class C

Local training

Parameter updates

Global model

discriminator generator

Global model

Copy
parameter

Victim Client

is an image of Class C?

0.15
0.20
0.65

GAN training

Class Representative Attack

206

GANAttack [3]

Class B, Class C

Local training

Parameter updates

Global model

discriminator generator

Global model

Copy
parameter

Victim Client

is

0.15
0.20
0.65

[a]

[b]

Mislabel
generated data

Class A, Class B
Target at attacking Class C

an image of Class C?

Class Representative Attack

207

GANAttack [3]

Class B, Class C

Local training

Parameter updates

Global model

discriminator generator

Global model

Copy
parameter

Victim Client

is

0.15
0.20
0.65

[a]

[b]

Local training

Parameter updates

Local training

Class A, Class B
Target at attacking Class C

an image of Class C?

Class Representative Attack

208

Running GANAttack on FEMNIST in FederatedScope:
• Configuration (insert these lines into the current file):

• The command to run the example attack on FEMNIST with FedAvg:

attack:
attack_method: gan_attack
attacker_id: 5
target_label_ind: 3

Malicious attacker id

The target class label index

python federatedscope/main.py --cfg
federatedscope/attack/example_attack_config/CRA_fedavg_convnet2
_on_femnist.yaml

209

Class Representative Attack

• Running Result:
Images Generated by the generator:

Develop Attack Methods in FederatedScope

210

Server as attacker:

Attacks act during training:
• Inherit the server class
• Add the attack actions by modifying callback_funcs_model_para function

Attacks act after training:
• Inherit the server class
• Add the attack actions after the last round by modifying

callback_funcs_model_para function

Participant Plug-In

Participant Plug-In

First make sure that the target FL algorithm has been implemented.

Example

Property Inference Attack
• Inherit Server class and modify
callback_funcs_model_para

...

211

Example

212

Property Inference Attack
• Inherit Server class and modify
callback_funcs_model_para
• At each FL round:

• Collect the model updates
• Generate training data for PIA

classifier

...

Attacks act
during training

Check if it is the last round

Example

213

Property Inference Attack
• Inherit Server class and modify
callback_funcs_model_para
• At each FL round:

• Collect the model updates
• Generate training data for PIA

classifier
• After training:

• Train PIA classifier
• Inference the property

...

Attacks act after
training

Example

214

Property Inference Attack
• Inherit Server class and modify
callback_funcs_model_para
• At each FL round:

• Collect the model updates
• Generate training data for PIA

classifier
• After training:

• Train PIA classifier
• Inference the property

...

Add the overloaded Server class
to get_server_cls function

Develop Attack Methods in FederatedScope

215

Client as attacker:

Attacks act during training:
• Wrap the trainer to add acttack actions

Attacks act after training:
• Inherit the Client class
• Add the attack actions by modifying callback_funcs_for_finish

function

Behavior Plug-In

Participant
Plug-In

First make sure that the target FL algorithm has been implemented.

Example

216

Class Representative Attack

• Wrap the trainer

Attacks act
during training

Example

217

Class Representative Attack

• Wrap the trainer
• Hold a local GAN

Example

218

Class Representative Attack

• Wrap the trainer
• Hold a local GAN
• At each FL round:

• Before local training:
• Update GAN’s discriminator by

the received parameters, and train
GAN’s generator

• Generate fake data and mislabel
them

Example

219

Class Representative Attack

• Wrap the trainer
• Hold a local GAN
• At each FL round:

• Before local training:
• Update GAN’s discriminator by

the received parameters, and train
GAN’s generator

• Generate fake data and mislabel
them

• During local bath forward:
• Inject the fake data in training

batch

Defense Strategies

220

• Encrypt gradients
• Secure aggregation, such as Multi-party computation (MPC);
• Homomorphic encryption (HE)

• Perturbing gradients
• Gradient pruning
• Differential privacy: adding noise to gradient

FederatedScope supports the above defense strategies!

Defense Strategies

221

• Weak encryption of inputs (i.e. encoding inputs)
• MixUp [7]: create the images via linear combination of image pair
• InstaHide[8]: extend MixUp

[7] Mixup: Beyond Empirical Risk Minimization. ICLR, 2018.
[8] InstaHide: Instance-hiding schemes for private distributed learning. ICML 2020.

Wil be supported in
FederatedScope soon!

Defense Strategies

222

• Add private components to the model (regularization,
network):
• Do not share BatchNorm layer during FL [9]
• Secret Polarization Network [10]:

• Some fully connected layers are kept private with its parameters not shared

[9] Evaluating Gradient Inversion Attacks and Defenses in Federated Learning. NeurIPS, 2021.
[10] Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks. In Federated
Learning: Privacy and Incentive. LNCS, 2020.

Practical defense suggestions [9]:
• Use large batch size (>=32)
• Combine multiple defenses may achieve a better utility-privacy trade-off

More Attack Methods in FederatedScope

223

• Privacy attacks
• More SOTA privacy attacks
• Defense strategies

• Poisoning attacks
• Data poisoning
• Model poisoning
• Back-door
• Defense strategies

STAY TUNED!

References

224

[1] Threats, attacks and defenses to federated learning: issues, taxonomy and
perspectives. Cybersecur. 2022.

[2] Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning. IEEE Symposium on Security and Privacy 2019.

[3] Deep models under the GAN: information leakage from collaborative deep learning. CCS. 2017.
[4] Deep leakage from gradients. NeurIPS 2019.

[5] idlg: Improved deep leakage from gradients[J]. arXiv preprint, 2020.
[6] Inverting gradients-how easy is it to break privacy in federated learning?. NeurIPS 2020.
[7] Mixup: Beyond Empirical Risk Minimization. ICLR, 2018.

[8] InstaHide: Instance-hiding schemes for private distributed learning. ICML 2020.
[9] Evaluating Gradient Inversion Attacks and Defenses in Federated Learning. NeurIPS, 2021.

[10] Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks. In
Federated Learning: Privacy and Incentive. LNCS, 2020.

• Overview

• Personalized Federated Learning

• Federated Graph Learning

• Federated Hyperparameter Optimization

• Privacy Attacks

225

Agenda of Tutorial

FederatedScope Team

226

Website: https://federatedscope.io/

https://federatedscope.io/

Thank you!

Yaliang Li, Zhen Wang, and Bolin Ding

Email: {yaliang.li, jones.wz, bolin.ding}@alibaba-inc.com

Please feel free to contact us if you have any questions,
or you are interested in full-time or research intern positions.

227

