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Machine Learning Pipeline

Data/Feature 
Preprocessing 

Model 
Selection

Hyperparameter
Tuning

So MANY choices
• Which feature transformation?
• Which model architecture?
• Which hyperparameters?
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Machine Learning Pipeline

Data/Feature 
Preprocessing 

Model 
Selection

Hyperparameter
Tuning

AutoML
• Auto Feature Generation
• Neural Architecture Search
• Hyperparameters Optimization
• Meta Learning
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Automated Machine Learning

AutoML

Hyperparameter 
Op+miza+on 

Auto Feature Generation

ML-Guided Database

Neural Architecture Search 

Meta-Learning

AutoML: How to automate the process of applying machine 
learning components to various real-world tasks?
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Automated Machine Learning

Inductive bias (prior α): how we represent data, which kinds of models to be 
considered, how to tune hyper-parameter, how to transfer knowledge across 
tasks, etc…

5



Tutorial Schedule

Yaliang Li, Background and Overview of AutoML
Hyperparameter Optimization  

Zhen Wang, Neural Architecture Search 
Meta-Learning

Yuexiang Xie, Automatic Feature Generation 

Ce Zhang, VolcanoML: End-to-End AutoML via        
Scalable Search Space Decomposition 

Bolin Ding, Machine Learning Guided Database 
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Hyperparameter
Optimization (HPO)
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Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

Hyperparameter Optimization
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Hyperparameter Configuration v.s. Schedule

• Hyperparameter configuration search
methods find a fixed hyperparameter
setting to maximize the model performance.

• Hyperparameter schedule search methods
seek a dynamic hyperparameter schedule
in the model training process.

Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model
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Hyperparameter Optimization

Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

q Hyperparameter Configuration
• Random search, Grid Search

• Successive-halving, Hyperband

• Bayesian optimization

q Hyperparameter Schedule
• Population-based training

• Hypergradient
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Search Methods

Image source: Bergstra & Bengio. JMLR, 2012. 
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Successive-Halving

• Uniformly allocate a budget  to a set of 
hyperparameter configurations

• Evaluate the performance of all configurations
• Throw out the worst half

Repeat until one configuration remains 

Non-stochastic best arm identification and hyperparameter optimization. 2016. 
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Hyperband
• Successive-Halving needs to determine the number of configurations (i.e., 𝑛)

• Outer loop
• Grid search for different 𝑛

• Inner loop
• Successive-Halving for given 𝑛 configs
• s.t. at least one config is trained for 𝑅

𝑛!

𝑟!

Hyperband: A novel bandit-based approach to hyperparameter optimization. JMLR, 2018. 13



Bayesian Optimization

Given some tried {hyperparameter, performance} pairs, 
which hyperparameter should be the next one to try?
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Bayesian Optimization

Given some tried {hyperparameter, performance} pairs, 
which hyperparameter should be the next one to try?

Independence assumption Follow a certain distribution

Bayesian Optimization
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Bayesian Optimization

Fit a probabilistic function f(x) to model {x=hyperparameter, f(x)=performance}

• Function f(x) isn’t required to be convex, differentiable

• Rich theoretical results: convergence, sync v.s. async, various model choices

• Exploration-exploitation trade-off

• Costly 

16



Hyperparameter Optimization

Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

q Hyperparameter Configuration
• Random search, Grid Search

• Successive-halving, Hyperband

• Bayesian optimization

q Hyperparameter Schedule
• Population-based training

• Hypergradient
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Hyperparameter Schedule 

Population-based training Hypergradient

Self-tuning networks: Bilevel optimization of hyperparameters 
using structured best-response functions. ICLR, 2019. 

A generalized framework for population based 
training. KDD, 2019.
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Practical Challenge (1) 

Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

Model Size

Data Size
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ABC: Sampling

Model
Training

Model
Testing

Training
Data

Sampling 
ratio: r

Testing 
Data

Hyperparameter 
Configuration: C

Performance: P

{r, C, P}

Efficient Identification of Approximate Best Configuration of Training in Large Datasets. AAAI, 2019.
20



Illustration of Hyperparameter optimization

q ExisCng methods
• Search-strategy based: Successive-halving, Hyperband, etc.
• Evolu+onary algorithm: Popula+on Based Training, etc.
• Bayesian op+miza+on

Each category of hyperparameter optimization 
methods has its advantages and disadvantages. 
Can we adaptively combine them and utilize 
their advantages for different tasks?

Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

A New Method: 𝜀GE

Hyperparameter Recommendation for Machine Learning Method. Patent, 2019. 21



Choose 
C’

<r’, C’, P’>

Terminated

{r, C, P} Increase
r’

Train and test 
model: P’

Output C with 
the best P

• Random strategy: randomly choose a 
configuration with probability 𝜺

• Greedy strategy: choose the best configuration
• Evolution strategy: choose the best 

configuration and perturb it with mutation and 
crossover

A New Method: 𝜀GE
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The task-adaptively combination of different hyperparameter 
optimization methods leads to faster solutions!  

• A soft version of Hyperband
• Evolutionary operation
• A simplified version of 

Bayesian optimization     
(i.e., local smoothness 
assumption)

HPO: Sampling method-𝜀GE

Hyperparameter Recommendation for Machine Learning Method. Patent, 2019. 23



Practical Challenge (2) 

Mutation-driven global search
PBT, KDD2019 

Hypergradient-guided local search
STN, ICLR2019
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Hyperparameter Schedule 

Trade-off between Evolutionary algorithm (PBT) and Hyper-gradient based method: 
• Hyper-gradient based method performs better than PBT on the smooth optimization problems.
• Hyper-gradient based method performs worse than PBT on the cases of many local minima (non-

smooth). 

How to learn a good trade-off between the global search and local search?

A smooth optimization problem A non-smooth op+miza+on problem

25



26

HyperMutaion (HPM)
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Hypertraining: a joint optimization over 𝜃 and ℎ
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Exploit by a truncation selection
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Explore by the learnable mutation
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Learning mutations with a teacher network
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Continue hypertraining after exploit & explore
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Experiments on test functions

Figure: (a)-(b) The mean performance computed by different methods along with the standard 
deviation over 10 trials, in terms of different given budget of iterations. (c) The average mutation 
values learned by HPM over 10 trials. In each trial, HPM runs 30 iterations in total with a 
population size of 5, resulting in 6 training steps and 5 mutations.
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Experiments on test functions

Figure: (a)-(b) The mean performance computed by different methods along with the standard 
deviation over 10 trials, in terms of different given budget of iterations. (c) The average mutation 
values learned by HPM over 10 trials. In each trial, HPM runs 30 iterations in total with a 
population size of 5, resulting in 6 training steps and 5 mutations.
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Experiments on benchmark datasets



Takeaways

Model 
Training

Hyperparameter
Optimization Best

Hyperparameter

Best
Model

q Hyperparameter Configuration
• Random search, Grid Search

• Successive-halving, Hyperband

• Bayesian optimization

q Hyperparameter Schedule
• Population-based training

• Hypergradient

• HyperMutation (HPM)
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Future Directions
Ø Faster, Green

§ HPO via Meta-Learning

Ø HPO for a specific domain
§ a group of algorithm, e.g. Graph-related

Ø Interactive, Human-in-the-loop
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Neural Architecture 
Search (NAS)
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Neural Architecture Search
q What is neural architecture search (NAS)?

• To find the optimal topology and/or size
configuration for the neural network.
• E.g., select a filter from {CNN3×3, CNN5×5,
DilatedCNN5×5}.

• E.g., determine the depth and width of a neural network.

q Why NAS?
• Architecture matters a lot on the

performance!
• The choices cannot be exhausted.
• Useful prior knowledge, e.g., the invariance

possessed by the task, has been exploited.

Figure: Image classification on ImageNet (source: https://paperswithcode.com/sota/image-
classification-on-imagenet).

38
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Elements of NAS

q Search strategy
• How to utilize experience?
• How to propose new configuration to try?
• E.g., RL, ES, and differentiable search.

q Search space
• All the possible configurations.
• E.g., filter size, activation functions, depth, etc.

q Performance esCmaCon strategy
• How to evaluate a configura+on?
• E.g., standard training and surrogate objec+ve.

39



And the Theme of NAS

q Search strategy
• How to utilize experience?
• How to propose new configuration to try?
• E.g., RL, ES, and differentiable search.

q Search space
• All the possible configurations.
• E.g., filter size, activation functions, depth, etc.

q Performance estimation strategy
• How to evaluate a configuration?
• E.g., standard training and surrogate objective.

Exploitation v.s. Exploration

Incorporating prior knowledge reduces search space but
makes it constrained to some extent, e.g., Inception-v2/3
à stacked cells [Zoph et al. 2018].

Instead of asympto+c regret, prac++oners balance the
exploita+on and explora+on to achieve best solu+on
under a given finite horizon.

Standard training&validation is expensive but accurate.

The proposed surrogate objectives are efficient but less
correlated.

40



Pioneer Works of NAS

Neural Architecture Search with Reinforcement Learning. ICLR, 2017, https://arxiv.org/pdf/1611.01578.pdf

q Search space
• Consider both CNN and RNN cells.
• The configuration of each layer can be

determined respectively.

q Search strategy
• RL with the policy parameterized by a RNN.

q Performance estimation strategy
• Standard train&validation

Figure: How the controller (i.e., a RNN) samples a CNN with skip connection.

Figure: An overview o the trial-and-error process of NAS.

41
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Pioneer Works of NAS

Neural Architecture Search with Reinforcement Learning. ICLR, 2017, https://arxiv.org/pdf/1611.01578.pdf

q Search space
• Consider both CNN and RNN cells.
• The configuration of each layer can be

determined respectively.

q Search strategy
• RL with the policy parameterized by a RNN.

q Performance estimation strategy
• Standard train&validation

Figure: An overview o the trial-and-error process of NAS.

q Unfold the gain of NAS😄 and also its pain☹
• Searched CNN and RNN cells achieve compe++ve

performances against manually designed architectures
on CIFAR-10 and PTB respec+vely.

• Searched architecture can be transferred to other tasks.
• Trained 12,800 models in total on 800 GPUs.
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Weight Sharing for One-shot NAS
q Weight sharing

• Represent NAS’s search space using a single DAG.
• An architecture can be realized by taking a subgraph.
• E.g., deducing a RNN cell as follow:

Efficient Neural Architecture Search via Parameter Sharing. ICML, 2018, http://proceedings.mlr.press/v80/pham18a/pham18a.pdf

q One-shot NAS
• Each architecture (i.e., subgraph) is evaluated

by inheriting the shared parameters.
• Shared parameters are trained with sampled

architecture.
• Parameters and the controller are updated

alternatively.

q Advantage and concern
• ENAS [Pham and Guan et al., 2018] uses 10h

of one GTX1080Ti, which is 1000x faster than
[Zoph et al., 2017].

• Does the performance of a stand-alone
training correlate with that of one-shot NAS
[Bender et al., 2018, Zhang et al., 2020]?

Figure: How a RNN cell (i.e., highlighted subgraph)
inherits the shared parameters.

43

http://proceedings.mlr.press/v80/pham18a/pham18a.pdf


Differentiable NAS

DARTS: Differentiable Architecture Search. ICLR, 2019, https://arxiv.org/pdf/1806.09055.pdf

q Continuous relaxation
• Each edge denotes a mixture of ops in Ο = {CNN3×3,DilatedCNN3×3 ,Zero,Identity, … }.
• For each edge 𝑖, 𝑗 , they parameterize the weights of ops by architecture parameter 𝛼 !,# .
• Suppose the tensor at node! is 𝑥, then the tensor propagated to node# will be:

Figure: An overview of DARTS. (a) Operations are initially unknown. (b) Continuous relaxation.
(c) architecture parameters are optimized jointly. (d) Inducing the final architecture.

q Differentiable learning
• Formulated as a bilevel optimization

problem:

• Regarded as a Stackelberg game
• Architecture parameters as leader
• Model parameters as follower

44
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Differentiable NAS
q DifferenCable learning (contd’)

• No way to es+mate the ∇$𝐿%&' 𝑤∗ 𝛼 , 𝛼
exactly.

• DARTS approximates the gradient by looking
ahead one-step for 𝜔 like meta-learning.

• It is further simplified by trea+ng the
parameters equally [Li et al., 2021].

q Deriving discrete architecture
• Retain the top-k strongest predecessors for

each node 𝑗 where strength of 𝑖, 𝑗 is defined

as: argmax
)∈+

,-. $!
(#,%)

∑!'∈) ,-. $
!'
#,% .

• Replace each edge by the most likely op:
𝑜 !,# = argmax

)∈+
𝛼)
!,#

q Improve DARTS by annealing and pruning

ASAP: Architecture Search, Anneal and Prune. AISTATS, 2020,
http://proceedings.mlr.press/v108/noy20a/noy20a.pdf 45
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Dealing with Scalability Issue
q Horrible memory occupation of one-shot NAS

• The supergraph cannot fit into GPU memory for large datasets.
• Usually search architecture on CIFAR-10 and transfer to ImageNet.

ProxylessNAS: Direct Neural Architecture Search of Target Task And Hardware. ICLR, 2019, hXps://arxiv.org/pdf/1812.00332.pdf

q Binarized architecture
• Transform real-valued path weights to binary gates.
• Only one path is ac+ve in memory at run+me.

Figure: ProxylessNAS directly optimizes neural architecture on target task and hardware.

Figure: Note the straight-through estimator (STE) trick.
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Rethinking the Search Space of NAS
q Explore less constrained search spaces

[Xie et al. 19]
• Consider stochastic network generator, e.g., ER, BA,

and WS.
• All yield >73% mean accuracy on ImageNet with a

low variance!
• Presented graph damage ablation.

q Design search space [Radosavovic et al. 20]
• Evaluate a search space by its error distribution.
• Input a search space and output a refined one.

Figure: two steps of refinement with the error distribution constantly improved.

Figure: randomly remove one node/edge.
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Rethinking the Search Space of NAS
q From the view of graph structure [You et al. 20a]

• From DAG to relational graph.
• Sweet spots are consistent across different datasets and

architectures.

Figure: proposed WS-flex provides a larger search space.

Graph Structure of Neural Networks. ICML, 2020, http://proceedings.mlr.press/v119/you20b/you20b.pdf 48
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Rethinking the Search Space of NAS
q From the view of graph structure [You et al.

20a]
• From DAG to rela+onal graph.
• Sweet spots are consistent across different datasets and

architectures.

Figure: Key results.

Graph Structure of Neural Networks. ICML, 2020, http://proceedings.mlr.press/v119/you20b/you20b.pdf 49
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Size Search Space
q Model scaling

• Keep the architecture but adjust the size:
• Depth 𝐿
• Width 𝐶
• And resolution 𝐻,𝑊

• Maximize the performance w.r.t. the size.

q EfficientNet [Tan et al. 19]

• Compound scaling method: 𝑑 = 𝛼! , 𝜔 = 𝛽! , 𝑟 = 𝛾! where 𝛼×𝛽"×𝛾" ≈ 2, 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1.

• Step1: Fix 𝜙 = 1 and do a small grid search for 𝛼, 𝛽, 𝛾. Step2: Fix 𝛼, 𝛽, 𝛾 and scale up 𝜙.

Figure: Model size v.s. ImageNet accuracy.

50



From CNN/RNN to GNN
q Uniqueness in search space

• More dimensions of choices:
• Micro: mainly aggregation and combine functions.
• Macro: how node embeddings in each layer produce the final one.

• Nodes are not independent, so how about in a node-wise manner?

q Challenges of weight-sharing one-shot NAS
• Different options lead to quite different output statistics [Zhou et al. 19].

q Transfer across datasets and tasks [You et al. 20b]
• Collect 32 (diverse) tasks.
• Use anchor models to calculate task similarities.

Figure: Comparing the correlations.

Figure: General message passing.
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Beyond Accuracy: Efficiency and Robustness

q Making latency differentiable [Cai et al. 19]

q Searching robust architecture [Guo et al. 20]

Figure: Introducing latency
regulariza]on loss.

Figure: Performance of 1k sampled architecture. Figure: Analysis of top 300 robust v.s. non-robust architectures.
52



Beyond Accuracy: Compressed Model Search

AdaBERT: Task-Adaptive BERT Compression with D-NAS. IJCAI, 2020, https://arxiv.org/abs/2001.04246

Method Averaged 
Performance

Inference
Speed

BERT 82.5 1x

BERT-PKD 80.6 1.9x

DistillBERT 76.8 3.0x

TinyBERT 80.6 9.4x

AdaBERT 80.1 12.7x ~ 29.3x

The proposed AdaBERT achieves significant speedup 
in inference time while maintaining comparable 
performance compared to uncompressed model.

• Pre-trained language model such as BERT achieves great performance on 
various tasks, but it is difficult to be deployed to real-Ome applicaOons.

• Can we task-adapFvely compresses original BERT for different tasks? 

53
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Beyond Accuracy: Compressed Model Search

AdaBERT: Task-Adaptive BERT Compression with D-NAS, IJCAI, 2020, https://arxiv.org/abs/2001.04246

Figure: Searched structures of compressed models for different tasks

Table: Performance of searched structures across different tasks 

These results demonstrate that the proposed 
AdaBERT compresses original BERT adaptively 
for different downstream tasks.
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NAS Benchmarks
q NAS-Bench-101 [Ying et al. 19]

• Provides a lookup table for the 423k architectures.
• Including their train/valid/test accuracies, number of parameters, and training +me.

q NATS-Bench [Dong et al. 21]
• Search space considers both size and topology factors.

Figure: The search space of NATS-Bench. 55
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NAS Benchmarks
q NAS-Bench-101 [Ying et al. 19]

• Provides a lookup table for the 423k architectures.
• Including their train/valid/test accuracies, number of parameters, and training time.

q NATS-Bench [Dong et al. 21]
• Search space considers both size and topology factors.

Figure: Comparison the benchmarks.
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Takeaways

q Search strategy

q Search space

q Performance estimation strategy

• Trial-and-error, e.g., RL and ES • One-shot NAS
• Differentiable (+sampling ops)

• Layer by layer
• Pre-defined restricted design space
• Pre-defined size

• Repeated normal&reduction cell
• Search for design space
• Also search for optimal size

• Stand training&validaOon
• Single objecOve

• With weight-sharing
• MulOple objecOves
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Future Directions
q Reduce the variance of one-shot NAS

• The interference between child models is a main factor [Zhang et al. 2020].
• E.g., sharing unless some condition(s) are satisfied.

q Select the truly useful architecture
• The magnitude of architecture parameters does not necessarily indicate how much the operation 

contributes to the supernet’s performance [Wang and Cheng et al. 2021].

Figure: Validation
performance of each
child model during the
last 120 steps.
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Dynamic Neural Networks: A Survey,
https://arxiv.org/pdf/2102.04906.pdf

q Beyond NAS: From
staCc to dynamic
neural architecture.

• Fine-grained tuning.

• Mainly focusing on CNNs
and efficiency issue now.
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Meta-learning
q What is meta-learning?

• Training on a meta-dataset consis+ng of many datasets, where each is a different task.
• Extract prior knowledge from it that accelerates the learning of new tasks.

Figure: Example of how meta-learning works (source: hXps://cs330.stanford.edu/slides/cs330_metalearning_bbox_2020.pdf).
62
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q AutoML as a service
• What if users do not have a large dataset for training a deep model?
• What if users want to quickly learn a new task?

When Meta-learning Meets AutoML

AutoML

Hyperparameter 
Optimization 

Automatic
Feature
Generation

NAS

Figure: The distribu]on of the scales of
datasets. (source: hXps://cs330.stanford.edu/).
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q AutoML as a service
• Assume different tasks share some common principles.
• Can we exploit the cumulated experience?

When Meta-learning Meets AutoML

AutoML

Hyperparameter 
Optimization 

Automatic
Feature
Generation

NAS Meta-Learning😄
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Meta-learning Basics
q Exploit the meta-dataset

• Conventional ML:

• Meta-learning:

q Replace the meta-dataset by meta-parameters
• Sufficient to represent the meta-dataset.

this is the adaptation problem
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Optimization-based Meta-learning
q AdaptaCon problem

• Acquire 𝜙! via op+miza+on 𝜙! =
𝑎𝑟𝑔𝑚𝑎𝑥0 log 𝑝 𝐷!12|𝜙 + log 𝑝 𝜙|𝜃 .

• 𝜃 serves as a prior.

q Which form of prior to take?
• Ini+aliza+on and fine-tuning!

Figure: Illustra]ng the idea of op]miza]on-based meta-
learning (source: hXps://arxiv.org/pdf/1703.03400.pdf).

Where 𝑔! =
3
34#

𝐿 𝜃! , 𝐷12 , �̅�! =
3
34*

𝐿 𝜃! , 𝐷12 ,

T𝐻! =
3
34*

�̅�! (Hessian w.r.t. 𝜃5)
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Optimization-based Meta-learning

Figure: Probabilistic interpretation of optimization-based
meta-learning (source: https://cs330.stanford.edu/).

😄Model-agnosOc
😄Maximally expressive with sufficiently deep neural networks
☹Typically requires second-order computaOon/memory intensive

q Probabilistic interpretation
• Maximize a posterior (MAP) with 𝜃 as the prior.

q MAML [Finn et al. 17] approximates hierarchical
Bayesian inference!

• Gradient descent with early stop = MAP inference under Gaussian prior
with mean at initial parameters.

• Other forms, e.g.,
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Model-based Meta-learning
q Adaptation problem

• From solving optimization problem to black-box adaptation 𝜙! = 𝑓4 𝐷!12 = 𝑎𝑟𝑔𝑚𝑎𝑥0 log 𝑝 𝜙|𝐷!12 , 𝜃
• Train a neural networks to represent 𝑝 𝜙!|𝐷!12 , 𝜃

• E.g., RNN, Neural Turing Machine, memory-augmented NN [Santoro et al. 16], etc.

Figure: Memory-augmented neural networks (source: https://proceedings.mlr.press/v48/santoro16.pdf).

𝐷!"# 𝐷!"$

😄Expressive
☹Oden sample-inefficient
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Metric-based Meta-learning
q Use Non-parametric learner

Figure: The idea of metric-based
meta-learning (source:
https://cs330.stanford.edu/slide
s/cs330_nonparametric_2020.p
df).

😄EnOrely feedforward
😄Easy to opOmize
☹Harder to generalize to varying
k-ways (especially for very large k)
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Metric-based Meta-learning
q Use Siamese neural networks

• Meta-training: binary classificaPon.
• Meta-test: k-way classificaPon.

Figure: Architecture of
Siamese neural networks
and its application to
one-shot learning.

Siamese Neural Networks for One-shot Image Recogni]on. ICML, 2015, hXps://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
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Metric-based Meta-learning
q Match the train&test phases by Matching networks

• Fix the mismatch between meta-training and meta-test.
• Map a (support) set 𝑆 = 𝑥!, 𝑦! to a classifier:

• The afenOon mechanism 𝑎 ⋅,⋅ fully specifies the classifier.

Figure: Architecture of Matching network.

Matching Networks for One Shot Learning. NeurIPS, 2016, https://arxiv.org/abs/2001.00745 71
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GPT-3: meta-learning as pre-training

q What’s the meta-dataset?
• Crawled text corpora.
• 𝐷!12: sequence of characters, 𝐷!16: the following sequence of characters.

q What’s the meta-learning problem?
• Put different tasks all in the form of text.
• Thus trained on language generaPon tasks.

q What’s the extracted prior knowledge?
• A “Transformer” model as the ini+aliza+on.

Figure: The model is far from perfect (source:
hXps://github.com/shreyashankar/gpt3-
sandbox/blob/master/docs/priming.md).
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Generalization v.s. Customization

q Key assumption of meta-learning
• Meta-training and meta-test tasks are drawn i.i.d. from the same task

distribution.
• E.g., Omniglot:

• 1623 characters from 50 different alphabets.
• 20 instances for each character.

Figure: Characters of different alphabets (source: https://omniglot.com/).
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Generalization v.s. Customization

q Key assumpCon of meta-learning
• Meta-training and meta-test tasks are drawn i.i.d. from the same task

distribu+on.
• E.g., Omniglot:

• 1623 characters from 50 different alphabets.
• 20 instances for each character.

q Experience cumulated on the cloud
• Different user experiments can be quite different.
• Learning a global prior may be insufficient.

Cumulated
Experience

Meta-learning

Global Prior

𝐷!12

Customization

Customized
Ini+aliza+on

Adaptation

Task-specific
Model

Task
Signature

☹Can NOT be strictly saOsfied!
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Relational Meta-Learning

The proposed relational meta-
learning method can capture the 
relations among different tasks, 
which enhances the 
effectiveness of meta-learners.

Automated Rela]onal Meta-learning, ICLR, 2020, hXps://arxiv.org/abs/2001.00745

Meta
Learner

Learner-2

Learner-1

Learner-3 Learner-4

Most Meta-learning 
methods don’t capture 
the relations among 
tasks/learners.
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Summary and Future Directions

q Use meta-learning for improving real-world services
• AutoML as a service has cumulated a lot of experience.
• Learning tasks on different domains and/or with different models share some intrinsic patterns of

machine learning.
• What kinds of features are transferable? How to represent a task, a model, and a objective?

q How to uClize exisCng experience---meta-learning
• Learn a meta-parameter, so that we can quickly transfer to new task.
• Op+miza+on-based, model-based, metric-based

q What if tasks are heterogeneous?
• Trade-off between generaliza+on v.s. customiza+on
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Automatic Feature Generation
• In pracPce, many data scienPsts search for useful interacPve features in a trial-and-error manner, 

which has occupied a lot of their workloads. 
• Therefore, automaPc feature generaPon (AutoFeature), as one major topic of automated machine 

learning (AutoML), has received a lot of aYenPon from both academia and industry.

… … … … … …

… … … … … …

… … … … … …

… … … … … …

Data
AutoFeature

Model
Useful Interactive

Features
Downstream
Applications
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Automatic Feature Generation

• Industries such as healthcare and finance 
need interpretability

• Can be applied to train lightweight models 
for real-time requirement

• The number of possible interacPve features 
is too large to be traversed 
( 𝑂 2" for 𝑚 original features )

Feature Interpretability

Search Efficiency
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Automatic Feature Generation
q The related works on automaPc feature generaPon can be roughly divided 

into two categories:

• DNN-based methods
• Search-based methods

DNN-based methods design specific neural
architectures to express the interactions 
among different features.
• Implicit feature generation
• One-shot training course
• Lack of interpretable rules for feature 

interactions

Search-based methods focus on designing 
different search strategies that prune as much of 
the candidates to be evaluated as possible, 
while aiming to keep the most useful interacPve 
features.
• Explicit feature generaPon
• Trial-and-error training manner
• Need lots of Pme and compuPng resource

81



There are some recent works that model high-order feature in-
teractions. For example, NFM [13] stacked deep neural networks on
top of the output of the second-order feature interactions to model
higher-order features. Similarly, PNN [25], FNN [41], DeepCross-
ing [32], Wide&Deep [8] and DeepFM [11] utilized feed-forward
neural networks to model high-order feature interactions. How-
ever, all these approaches learn the high-order feature interactions
in an implicit way and therefore lack good model explainability.
On the contrary, there are three lines of works that learn fea-
ture interactions in an explicit fashion. First, Deep&Cross [38]
and xDeepFM [19] took outer product of features at the bit- and
vector-wise level respectively. Although they perform explicit fea-
ture interactions, it is not trivial to explain which combinations are
useful. Second, some tree-based methods [39, 42, 44] combined the
power of embedding-based models and tree-based models but had
to break training procedure into multiple stages. Third, HOFM [5]
proposed e�cient training algorithms for high-order factorization
machines. However, HOFM requires too many parameters and only
its low-order (usually less than 5) form can be practically used. Dif-
ferent from existing work, we explicitly model feature interactions
with attention mechanism in an end-to-end manner, and probe the
learned feature combinations via visualization.

2.3 Attention and Residual Networks
Our proposed model makes use of the latest techniques in the lit-
erature of deep learning: attention [2] and residual networks [12].
Attention is �rst proposed in the context of neural machine trans-
lation [2] and has been proved e�ective in a variety of tasks such
as question answering [35], text summarization [30], and recom-
mender systems [14, 33, 43]. Vaswani et al. [36] further proposed
multi-head self-attention to model complicated dependencies be-
tween words in machine translation.

Residual networks [12] achieved state-of-the-art performance
in the ImageNet contest. Since the residual connection, which can
be simply formalized as � = F (x) + x , encourages gradient �ow
through interval layers, it becomes a popular network structure for
training very deep neural networks.

3 PROBLEM DEFINITION
We �rst formally de�ne the problem of click-through rate (CTR)
prediction as follows:

DEFINITION 1. (CTR Prediction) Let x 2 Rn denotes the con-
catenation of user u’s features and item�’s features, where categor-
ical features are represented with one-hot encoding, and n is the
dimension of concatenated features. The problem of click-through
rate prediction aims to predict the probability of user u clicking on
item � according to the feature vector x.

A straightforward solution for CTR prediction is to treat x as the
input features and deploy the o�-the-shelf classi�ers such as logistic
regression. However, since the original feature vector x is very
sparse and high-dimensional, the model will be easily over�tted.
Therefore, it is desirable to represent the raw input features in low-
dimensional continuous spaces. Moreover, as shown in existing
literature, it is crucial to utilize the higher-order combinatorial
features to yield good prediction performance [6, 8, 11, 23, 26, 32].

… …

Multi-head	 			
Self-Attention

Interacting	
Layer

Output	Layer:	Estimated	CTR

…… 0.3 0.5100

Input	Layer:	sparse	feature	X

Embedding	
Layer

Feature	field	1 Feature	field	M

Figure 1: Overview of our proposed model AutoInt. The de-
tails of embedding layer and interacting layer are illustrated
in Figure 2 and Figure 3 respectively.

Speci�cally, we de�ne the high-order combinatorial features as
follows:

DEFINITION 2. (p-order Combinatorial Feature) Given input
feature vector x 2 Rn , a p-order combinatorial feature is de�ned
as �(xi1 , ...,xip ) , where each feature comes from a distinct �eld, p
is the number of involved feature �elds, and �(·) is a non-additive
combination function, such as multiplication [26] and outer prod-
uct [19, 38]. For example, xi1 ⇥ xi2 is a second-order combinatorial
feature involving xi1 and xi2 .

Traditionally, meaningful high-order combinatorial features are
hand-crafted by domain experts. However, this is very time-consuming
and hard to generalize to other domains. Besides, it is almost impos-
sible to hand-craft all meaningful high-order features. Therefore,
we aim to develop an approach that is able to automatically discover
the meaningful high-order combinatorial features and meanwhile
map all these features into low-dimensional continuous spaces.
Formally, we de�ne our problem as follows:

DEFINITION 3. (Problem De�nition) Given an input feature
vector x 2 Rn for click-through rate prediction, our goal is to learn
a low-dimensional representation of x, whichmodels the high-order
combinatorial features.

4 AUTOINT: AUTOMATIC FEATURE
INTERACTION LEARNING

In this section, we �rst give an overview of the proposed approach
AutoInt, which can automatically learn feature interactions for CTR
prediction. Next, we present a comprehensive description of how
to learn a low-dimensional representation that models high-order
combinatorial features without manual feature engineering.

4.1 Overview
The goal of our approach is to map the original sparse and high-
dimensional feature vector into low-dimensional spaces and mean-
while model the high-order feature interactions. As shown in Fig-
ure 1, our proposed method takes the sparse feature vector x as
input, followed by an embedding layer that projects all features
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AutoInt
q Map the original features into low-dimensional feature space and model 

the high-order feature interactions via self-attention.

Overview of the proposed model AutoInt.

① Input Layer: 
Each feature field is represented as an one-hot 
vector (for categorical feature) or a scalar value (for 
numerical feature).

② Embedding Layer: 
To transform the sparse and high-dimension features 
into a low-dimensional feature space via a learnable 
embedding matrix.

1

2

3

AutoInt: Automa]c Feature Interac]on Learning via Self-AXen]ve Neural Networks. CIKM, 2019.
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There are some recent works that model high-order feature in-
teractions. For example, NFM [13] stacked deep neural networks on
top of the output of the second-order feature interactions to model
higher-order features. Similarly, PNN [25], FNN [41], DeepCross-
ing [32], Wide&Deep [8] and DeepFM [11] utilized feed-forward
neural networks to model high-order feature interactions. How-
ever, all these approaches learn the high-order feature interactions
in an implicit way and therefore lack good model explainability.
On the contrary, there are three lines of works that learn fea-
ture interactions in an explicit fashion. First, Deep&Cross [38]
and xDeepFM [19] took outer product of features at the bit- and
vector-wise level respectively. Although they perform explicit fea-
ture interactions, it is not trivial to explain which combinations are
useful. Second, some tree-based methods [39, 42, 44] combined the
power of embedding-based models and tree-based models but had
to break training procedure into multiple stages. Third, HOFM [5]
proposed e�cient training algorithms for high-order factorization
machines. However, HOFM requires too many parameters and only
its low-order (usually less than 5) form can be practically used. Dif-
ferent from existing work, we explicitly model feature interactions
with attention mechanism in an end-to-end manner, and probe the
learned feature combinations via visualization.

2.3 Attention and Residual Networks
Our proposed model makes use of the latest techniques in the lit-
erature of deep learning: attention [2] and residual networks [12].
Attention is �rst proposed in the context of neural machine trans-
lation [2] and has been proved e�ective in a variety of tasks such
as question answering [35], text summarization [30], and recom-
mender systems [14, 33, 43]. Vaswani et al. [36] further proposed
multi-head self-attention to model complicated dependencies be-
tween words in machine translation.

Residual networks [12] achieved state-of-the-art performance
in the ImageNet contest. Since the residual connection, which can
be simply formalized as � = F (x) + x , encourages gradient �ow
through interval layers, it becomes a popular network structure for
training very deep neural networks.

3 PROBLEM DEFINITION
We �rst formally de�ne the problem of click-through rate (CTR)
prediction as follows:

DEFINITION 1. (CTR Prediction) Let x 2 Rn denotes the con-
catenation of user u’s features and item�’s features, where categor-
ical features are represented with one-hot encoding, and n is the
dimension of concatenated features. The problem of click-through
rate prediction aims to predict the probability of user u clicking on
item � according to the feature vector x.

A straightforward solution for CTR prediction is to treat x as the
input features and deploy the o�-the-shelf classi�ers such as logistic
regression. However, since the original feature vector x is very
sparse and high-dimensional, the model will be easily over�tted.
Therefore, it is desirable to represent the raw input features in low-
dimensional continuous spaces. Moreover, as shown in existing
literature, it is crucial to utilize the higher-order combinatorial
features to yield good prediction performance [6, 8, 11, 23, 26, 32].
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Figure 1: Overview of our proposed model AutoInt. The de-
tails of embedding layer and interacting layer are illustrated
in Figure 2 and Figure 3 respectively.

Speci�cally, we de�ne the high-order combinatorial features as
follows:

DEFINITION 2. (p-order Combinatorial Feature) Given input
feature vector x 2 Rn , a p-order combinatorial feature is de�ned
as �(xi1 , ...,xip ) , where each feature comes from a distinct �eld, p
is the number of involved feature �elds, and �(·) is a non-additive
combination function, such as multiplication [26] and outer prod-
uct [19, 38]. For example, xi1 ⇥ xi2 is a second-order combinatorial
feature involving xi1 and xi2 .

Traditionally, meaningful high-order combinatorial features are
hand-crafted by domain experts. However, this is very time-consuming
and hard to generalize to other domains. Besides, it is almost impos-
sible to hand-craft all meaningful high-order features. Therefore,
we aim to develop an approach that is able to automatically discover
the meaningful high-order combinatorial features and meanwhile
map all these features into low-dimensional continuous spaces.
Formally, we de�ne our problem as follows:

DEFINITION 3. (Problem De�nition) Given an input feature
vector x 2 Rn for click-through rate prediction, our goal is to learn
a low-dimensional representation of x, whichmodels the high-order
combinatorial features.

4 AUTOINT: AUTOMATIC FEATURE
INTERACTION LEARNING

In this section, we �rst give an overview of the proposed approach
AutoInt, which can automatically learn feature interactions for CTR
prediction. Next, we present a comprehensive description of how
to learn a low-dimensional representation that models high-order
combinatorial features without manual feature engineering.

4.1 Overview
The goal of our approach is to map the original sparse and high-
dimensional feature vector into low-dimensional spaces and mean-
while model the high-order feature interactions. As shown in Fig-
ure 1, our proposed method takes the sparse feature vector x as
input, followed by an embedding layer that projects all features
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AutoInt
q Map the original features into low-dimensional feature space and model 

the high-order feature interacPons via self-aYenPon.

Overview of the proposed model AutoInt.

③ Interacting Layer: 
The multi-head key-value attention mechanism is adopted 
to capture the interactions between different features. 
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2
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The architecture of interacting layer.
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CIKM, 2019.
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Figure 3: The architecture of interacting layer. Combinato-
rial features are conditioned on attention weights, i.e., � (h)m .

eem =ee(1)m �ee(2)m � · · · �ee(H)m , (7)
where � is the concatenation operator, and H is the number of total
heads.

To preserve previously learned combinatorial features, including
raw individual (i.e., �rst-order) features, we add standard residual
connections in our network. Formally,

eResm = ReLU(eem +WResem), (8)

where WRes 2 Rd
0H⇥d is the projection matrix in case of dimen-

sion mismatching [12], and ReLU(z) = max(0, z) is a non-linear
activation function.

With such an interacting layer, the representation of each feature
em will be updated into a new feature representation eResm , which
is a representation of high-order features. We can stack multiple
such layers with the output of the previous interacting layer as the
input of the next interacting layer. By doing this, we can model
arbitrary-order combinatorial features.

4.5 Output Layer
The output of the interacting layer is a set of feature vectors {eResm }Mm=1,
which includes raw individual features reserved by residual block
and combinatorial features learned via the multi-head self-attention
mechanism. For �nal CTR prediction, we simply concatenate all of
them and then apply a non-linear projection as follows:

�̂ = � (wT(eRes1 � eRes2 � · · · � eResM ) + b), (9)

where w 2 Rd 0HM is a column projection vector which linearly
combines concatenated features,b is the bias, and� (x) = 1/(1+e�x )
transforms the values to users clicking probabilities.

4.6 Training
Our loss function is Log loss, which is de�ned as follows:

Lo�loss = � 1
N

N’
j=1

(�j log(�̂j ) + (1 � �j ) log(1 � �̂j )), (10)

where �j and �̂j are ground truth of user clicks and estimated
CTR respectively, j indexes the training samples, and N is the total
number of training samples. The parameters to learn in our model

are {Vi, vm,W
(h)
�ery,W

(h)
Key,W

(h)
Value,WRes,w,b}, which are updated

via minimizing the total Logloss using gradient descent.

4.7 Analysis Of AutoInt
Modeling Arbitrary Order Combinatorial Features. Given fea-
ture interaction operator de�ned by Equation 5 - 8, we now analyze
how low-order and high-order combinatorial features are modeled
in our proposed model.

For simplicity, let’s assume there are four feature �elds (i.e.,M=4)
denoted by x1, x2, x3 and x4 respectively.Within the �rst interacting
layer, each individual feature interacts with any other features
through attention mechanism (i.e. Equation 5) and therefore a set
of second-order feature combinations such as�(x1,x2),�(x2,x3) and
�(x3,x4) are captured with distinct correlation weights, where the
non-additive property of interaction function �(·) (in DEFINITION
2) can be ensured by the non-linearity of activation function ReLU(·).
Ideally, combinatorial features that involve x1 can be encoded into
the updated representation of the �rst feature �eld eRes1 . As the
same can be derived for other feature �elds, all second-order feature
interactions can be encoded in the output of the �rst interacting
layer, where attention weights distill useful feature combinations.

Next, we prove that higher-order feature interactions can be
modeled within the second interacting layer. Given the representa-
tion of the �rst feature �eld eRes1 and the representation of the third
feature �eld eRes3 generated by the �rst interacting layer, third-order
combinatorial features that involve x1, x2 and x3 can be modeled
by allowing eRes1 to attend on eRes3 because eRes1 contains the inter-
action �(x1,x2) and eRes3 contains the individual feature x3 (from
residual connection). Moreover, the maximum order of combina-
torial features grows exponentially with respect to the number of
interacting layers. For example, fourth-order feature interaction
�(x1,x2,x3,x4) can be captured by the combination of eRes1 and eRes3 ,
which contain the second-order interactions �(x1,x2) and �(x3,x4)
respectively. Therefore a few interacting layers will su�ce to model
high-order feature interactions.

Based on above analysis, we can see that AutoInt learns feature
interactions with attention mechanism in a hierarchical manner,
i.e., from low-order to high-order, and all low-order feature inter-
actions are carried by residual connections. This is promising and
reasonable because learning hierarchical representation has proven
quite e�ective in computer vision and speech processing with deep
neural networks [3, 18].
Space Complexity. The embedding layer, which is a shared com-
ponent in neural network-based methods [11, 19, 32], contains nd
parameters, where n is the dimension of sparse representation of in-
put feature and d is the embedding size. As an interacting layer con-
tains following weight matrices: {W(h)

�ery,W
(h)
Key,W

(h)
Value,WRes},

the number of parameters in an L-layer network is L⇥(3dd 0+d 0Hd),
which is independent of the number of feature �elds M . Finally,
there are d 0HM + 1 parameters in the output layer. As far as in-
teracting layers are concerned, the space complexity is O(Ldd 0H ).
Note that H and d 0 are usually small (e.g., H = 2 and d 0 = 32 in our
experiments), which makes the interacting layer memory-e�cient.
TimeComplexity. Within each interacting layer, the computation
cost is two-fold. First, calculating attention weights for one head

… …0.3 0.5100

x1 xm

Embedding	
layer	

#$#% #&

xM
Input	layer	

Figure 2: Illustration of input and embedding layer, where
both categorical andnumerical�elds are represented by low-
dimensional dense vectors.

(i.e., both categorical and numerical features) into the same low-
dimensional space. Next, we feed embeddings of all �elds into a
novel interacting layer, which is implemented as a multi-head self-
attentive neural network. For each interacting layer, high-order
features are combined through the attention mechanism, and dif-
ferent kinds of combinations can be evaluated with the multi-head
mechanisms, which map the features into di�erent subspaces. By
stacking multiple interacting layers, di�erent orders of combinato-
rial features can be modeled.

The output of the �nal interacting layer is the low-dimensional
representation of the input feature, which models the high-order
combinatorial features and is further used for estimating the click-
through rate through a sigmoid function. Next, we introduce the
details of our proposed method.

4.2 Input Layer
We �rst represent user’s pro�les and item’s attributes as a sparse
vector, which is the concatenation of all �elds. Speci�cally,

x = [x1; x2; ...; xM], (1)

whereM is the number of total feature �elds, and xi is the feature
representation of the i-th �eld. xi is a one-hot vector if the i-th �eld
is categorical (e.g., x1 in Figure 2). xi is a scalar value if the i-th
�eld is numerical (e.g., xM in Figure 2).

4.3 Embedding Layer
Since the feature representations of the categorical features are very
sparse and high-dimensional, a common way is to represent them
into low-dimensional spaces (e.g., word embeddings). Speci�cally,
we represent each categorical featurewith a low-dimensional vector,
i.e.,

ei = Vixi, (2)
where Vi is an embedding matrix for �eld i , and xi is an one-hot
vector. Often times categorical features can be multi-valued, i.e., xi
is a multi-hot vector. Takemovie watching prediction as an example,
there could be a feature �eld Genre which describes the types of
a movie and it may be multi-valued (e.g., Drama and Romance
for movie “Titanic”). To be compatible with multi-valued inputs,
we further modify the Equation 2 and represent the multi-valued
feature �eld as the average of corresponding feature embedding
vectors:

ei =
1
q
Vixi, (3)

where q is the number of values that a sample has for i-th �eld and
xi is the multi-hot vector representation for this �eld.

To allow the interaction between categorical and numerical fea-
tures, we also represent the numerical features in the same low-
dimensional feature space. Speci�cally, we represent the numerical

feature as
em = vmxm , (4)

where vm is an embedding vector for �eldm, and xm is a scalar
value.

By doing this, the output of the embedding layer would be a con-
catenation of multiple embedding vectors, as presented in Figure 2.

4.4 Interacting Layer
Once the numerical and categorical features live in the same low-
dimensional space, we move to model high-order combinatorial
features in the space. The key problem is to determine which fea-
tures should be combined to form meaningful high-order features.
Traditionally, this is accomplished by domain experts who create
meaningful combinations based on their knowledge. In this pa-
per, we tackle this problem with a novel method, the multi-head
self-attention mechanism [36].

Multi-head self-attentive network [36] has recently achieved
remarkable performance in modeling complicated relations. For
example, it shows superiority for modeling arbitrary word depen-
dency in machine translation [36] and sentence embedding [20],
and has been successfully applied to capturing node similarities
in graph embedding [37]. Here we extend this latest technique to
model the correlations between di�erent feature �elds.

Speci�cally, we adopt the key-value attention mechanism [22] to
determine which feature combinations are meaningful. Taking the
featurem as an example, next we explain how to identify multiple
meaningful high-order features involving featurem. We �rst de�ne
the correlation between featurem and feature k under a speci�c
attention head h as follows:

� (h)m,k =
exp(� (h)(em, ek))ÕM
l=1 exp(� (h)(em, el))

,

� (h)(em, ek) = hW(h)
�eryem,W

(h)
Keyeki,

(5)

where� (h)(·, ·) is an attention function which de�nes the similarity
between the featurem and k . It can be de�ned as a neural network
or as simple as inner product, i.e., h·, ·i. In this work, we use inner
product due to its simplicity and e�ectiveness. W(h)

�ery, W
(h)
Key 2

Rd
0⇥d in Equation 5 are transformation matrices which map the

original embedding space Rd into a new space Rd
0
. Next, we update

the representation of feature m in subspace h via combining all
relevant features guided by coe�cients � (h)m,k:

ee(h)m =
M’
k=1

� (h)m,k(W
(h)
Valueek), (6)

whereW(h)
Value 2 Rd 0⇥d .

Sinceee(h)m 2 Rd 0
is a combination of featurem and its relevant

features (under head h), it represents a new combinatorial feature
learned by our method. Furthermore, a feature is also likely to be
involved in di�erent combinatorial features, and we achieve this by
using multiple heads, which create di�erent subspaces and learn
distinct feature interactions separately. We collect combinatorial
features learned in all subspaces as follows:
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Figure 2: Illustration of input and embedding layer, where
both categorical andnumerical�elds are represented by low-
dimensional dense vectors.

(i.e., both categorical and numerical features) into the same low-
dimensional space. Next, we feed embeddings of all �elds into a
novel interacting layer, which is implemented as a multi-head self-
attentive neural network. For each interacting layer, high-order
features are combined through the attention mechanism, and dif-
ferent kinds of combinations can be evaluated with the multi-head
mechanisms, which map the features into di�erent subspaces. By
stacking multiple interacting layers, di�erent orders of combinato-
rial features can be modeled.

The output of the �nal interacting layer is the low-dimensional
representation of the input feature, which models the high-order
combinatorial features and is further used for estimating the click-
through rate through a sigmoid function. Next, we introduce the
details of our proposed method.

4.2 Input Layer
We �rst represent user’s pro�les and item’s attributes as a sparse
vector, which is the concatenation of all �elds. Speci�cally,

x = [x1; x2; ...; xM], (1)

whereM is the number of total feature �elds, and xi is the feature
representation of the i-th �eld. xi is a one-hot vector if the i-th �eld
is categorical (e.g., x1 in Figure 2). xi is a scalar value if the i-th
�eld is numerical (e.g., xM in Figure 2).

4.3 Embedding Layer
Since the feature representations of the categorical features are very
sparse and high-dimensional, a common way is to represent them
into low-dimensional spaces (e.g., word embeddings). Speci�cally,
we represent each categorical featurewith a low-dimensional vector,
i.e.,

ei = Vixi, (2)
where Vi is an embedding matrix for �eld i , and xi is an one-hot
vector. Often times categorical features can be multi-valued, i.e., xi
is a multi-hot vector. Takemovie watching prediction as an example,
there could be a feature �eld Genre which describes the types of
a movie and it may be multi-valued (e.g., Drama and Romance
for movie “Titanic”). To be compatible with multi-valued inputs,
we further modify the Equation 2 and represent the multi-valued
feature �eld as the average of corresponding feature embedding
vectors:

ei =
1
q
Vixi, (3)

where q is the number of values that a sample has for i-th �eld and
xi is the multi-hot vector representation for this �eld.

To allow the interaction between categorical and numerical fea-
tures, we also represent the numerical features in the same low-
dimensional feature space. Speci�cally, we represent the numerical

feature as
em = vmxm , (4)

where vm is an embedding vector for �eldm, and xm is a scalar
value.

By doing this, the output of the embedding layer would be a con-
catenation of multiple embedding vectors, as presented in Figure 2.

4.4 Interacting Layer
Once the numerical and categorical features live in the same low-
dimensional space, we move to model high-order combinatorial
features in the space. The key problem is to determine which fea-
tures should be combined to form meaningful high-order features.
Traditionally, this is accomplished by domain experts who create
meaningful combinations based on their knowledge. In this pa-
per, we tackle this problem with a novel method, the multi-head
self-attention mechanism [36].

Multi-head self-attentive network [36] has recently achieved
remarkable performance in modeling complicated relations. For
example, it shows superiority for modeling arbitrary word depen-
dency in machine translation [36] and sentence embedding [20],
and has been successfully applied to capturing node similarities
in graph embedding [37]. Here we extend this latest technique to
model the correlations between di�erent feature �elds.

Speci�cally, we adopt the key-value attention mechanism [22] to
determine which feature combinations are meaningful. Taking the
featurem as an example, next we explain how to identify multiple
meaningful high-order features involving featurem. We �rst de�ne
the correlation between featurem and feature k under a speci�c
attention head h as follows:

� (h)m,k =
exp(� (h)(em, ek))ÕM
l=1 exp(� (h)(em, el))

,

� (h)(em, ek) = hW(h)
�eryem,W

(h)
Keyeki,

(5)

where� (h)(·, ·) is an attention function which de�nes the similarity
between the featurem and k . It can be de�ned as a neural network
or as simple as inner product, i.e., h·, ·i. In this work, we use inner
product due to its simplicity and e�ectiveness. W(h)

�ery, W
(h)
Key 2

Rd
0⇥d in Equation 5 are transformation matrices which map the

original embedding space Rd into a new space Rd
0
. Next, we update

the representation of feature m in subspace h via combining all
relevant features guided by coe�cients � (h)m,k:

ee(h)m =
M’
k=1

� (h)m,k(W
(h)
Valueek), (6)

whereW(h)
Value 2 Rd 0⇥d .

Sinceee(h)m 2 Rd 0
is a combination of featurem and its relevant

features (under head h), it represents a new combinatorial feature
learned by our method. Furthermore, a feature is also likely to be
involved in di�erent combinatorial features, and we achieve this by
using multiple heads, which create di�erent subspaces and learn
distinct feature interactions separately. We collect combinatorial
features learned in all subspaces as follows:
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AutoInt

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. CIKM, 2019.

q Experimental results on four real-world datasets show the advantages of AutoInt

An instance of auen+on weights for 
feature interac+ons on MovieLens-1M.Efficiency comparison on MovieLens-1M.

• Performance comparison in offline AUC evaluation for click-through rate (CTR) prediction
• Efficiency comparison 
• Explainable recommendations

Table 2: E�ectiveness Comparison of Di�erent Algorithms. We highlight that our proposed model almost outperforms all
baselines across four data sets and both metrics. Further analysis is provided in Section 5.2.

Model Class Model Criteo Avazu KDD12 MovieLens-1M
AUC Logloss AUC Logloss AUC Logloss AUC Logloss

First-order LR 0.7820 0.4695 0.7560 0.3964 0.7361 0.1684 0.7716 0.4424

Second-order FM [26] 0.7836 0.4700 0.7706 0.3856 0.7759 0.1573 0.8252 0.3998
AFM[40] 0.7938 0.4584 0.7718 0.3854 0.7659 0.1591 0.8227 0.4048

High-order

DeepCrossing [32] 0.8009 0.4513 0.7643 0.3889 0.7715 0.1591 0.8448 0.3814
NFM [13] 0.7957 0.4562 0.7708 0.3864 0.7515 0.1631 0.8357 0.3883
CrossNet [38] 0.7907 0.4591 0.7667 0.3868 0.7773 0.1572 0.7968 0.4266
CIN [19] 0.8009 0.4517 0.7758 0.3829 0.7799 0.1566 0.8286 0.4108
HOFM [5] 0.8005 0.4508 0.7701 0.3854 0.7707 0.1586 0.8304 0.4013
AutoInt (ours) 0.8061** 0.4455** 0.7752 0.3824 0.7883** 0.1546** 0.8456* 0.3797**

AutoInt outperforms the strongest baseline w.r.t. Criteo, KDD12 and MovieLens-1M data at the: ** 0.01 and * 0.05 level, unpaired t-test.

(a) Criteo (b) Avazu (c) KDD12 (d) MovieLens-1M
Figure 4: E�ciency Comparison of Di�erent Algorithms in terms ofRun Time. “DC” and “CN” are DeepCrossing and CrossNet
for short, respectively. Since HOFM cannot be �t on one GPU card for the KDD12 dataset, extra communication cost makes it
most time-consuming. Further analysis is presented in Section 5.2.

attention head is two8. To prevent over�tting, we use grid search
to select dropout rate [34] from {0.1 - 0.9} for MovieLens-1M data
set, and we found dropout is not necessary for other three large
data sets. For baseline methods, we use one hidden layer of size 200
on top of Bi-Interaction layer for NFM as recommended by their
paper. For CN and CIN, we use three interaction layers following
AutoInt. DeepCrossing has four feed-forward layers and the number
of hidden units is 100, because it performs poorly when using
three neural layers. Once all network structures are �xed, we also
apply grid search to baseline methods for optimal hype-parameters.
Finally, we use Adam [17] to optimize all deep neural network-based
models.

5.2 Quantitative Results (RQ1)
Evaluation of E�ectiveness
We summarize the results averaged over 10 di�erent runs into Ta-
ble 2. We have the following observations: (1) FM and AFM, which
explore second-order feature interactions, consistently outperform
LR by a large margin on all datasets, which indicates that individ-
ual features are insu�cient in CTR prediction. (2) An interesting
observation is the inferiority of some models which capture high-
order feature interactions. For example, although DeepCrossing

8We also tried di�erent number of attention heads. The performance of using one
head is inferior to that of two heads, and the improvement of further increasing head
number is not signi�cant.

and NFM use the deep neural network as a core component to
learning high-order feature interactions, they do not guarantee
improvement over FM and AFM. This may attribute to the fact
that they learn feature interactions in an implicit fashion. On the
contrary, CIN does it explicitly and outperforms low-order models
consistently. (3) HOFM signi�cantly outperforms FM on Criteo and
MovieLens-1M datasets, which indicates that modeling third-order
feature interactions can be bene�cial to prediction performance. (4)
AutoInt achieves the best performance overall baseline methods on
three of four real-world data sets. On Avazu data set, CIN performs
a little better than AutoInt in AUC evaluation, but we get lower
Logloss. Note that our proposed AutoInt shares the same structures
as DeepCrossing except the feature interacting layer, which indi-
cates using the attention mechanism to learn explicit combinatorial
features is crucial.

Evaluation of Model E�ciency
We present the runtime results of di�erent algorithms on four data
sets in Figure 4. Unsurprisingly, LR is the most e�cient algorithm
due to its simplicity. FM and NFM perform similarly in terms of
runtime because NFM only stacks a single feed-forward hidden
layer on top of the second-order interaction layer. Among all listed
methods, CIN, which achieves the best performance for prediction
among all the baselines, is much more time-consuming due to its
complicated crossing layer. This may make it impractical in the

Table 5: Results of Integrating Implicit Feature Interactions. We indicate the base model behind each method. The last two
columns are average changes of AUC and Logloss compared to corresponding base models (“+”: increase, “-”: decrease).

Model Criteo Avazu KDD12 MovieLens-1M Avg. Changes
AUC Logloss AUC Logloss AUC Logloss AUC Logloss AUC Logloss

Wide&Deep (LR) 0.8026 0.4494 0.7749 0.3824 0.7549 0.1619 0.8300 0.3976 +0.0292 -0.0213
DeepFM (FM) 0.8066 0.4449 0.7751 0.3829 0.7867 0.1549 0.8437 0.3846 +0.0142 -0.0113
Deep&Cross (CN) 0.8067 0.4447 0.7731 0.3836 0.7872 0.1549 0.8446 0.3809 +0.0200 -0.0164
xDeepFM (CIN) 0.8070 0.4447 0.7770 0.3823 0.7820 0.1560 0.8463 0.3808 +0.0068 -0.0096
AutoInt+ (ours) 0.8083** 0.4434** 0.7774* 0.3811** 0.7898** 0.1543** 0.8488** 0.3753** +0.0023 -0.0020

AutoInt+ outperforms the strongest baseline w.r.t. each data at the: ** 0.01 and * 0.05 level, unpaired t-test.

(a) Label=1, Predicted CTR=0.89 (b) Overall feature interactions
Figure 7: Heat maps of attention weights for both case-
and global-level feature interactions onMovieLens-1M. The
axises represent feature�elds <Gender, Age, Occupation, Zip-
code, RequestTime, RealeaseTime, Genre>.Wehighlight some
learned combinatorial features in rectangles.

the attention score. We can see that AutoInt is able to identify
the meaningful combinatorial feature <Gender=Male, Age=[18-24),
MovieGenre=Action&Triller> (i.e., red dotted rectangle). This is very
reasonable since young men are very likely to prefer action&triller
movies.

We are also interested in what the correlations between di�erent
feature �elds in the data are. Therefore, we measure the correlations
between the feature �elds according to their average attention score
in the entire data. The correlations between di�erent �elds are sum-
marized into Figure 7 (b). We can see that <Gender, Genre>, <Age,
Genre>, <RequestTime, ReleaseTime> and <Gender, Age, Genre> (i.e.,
solid green region) are strongly correlated, which are the explain-
able rules for recommendation in this domain.

5.5 Integrating Implicit Interactions (RQ4)
Feed-forward neural networks are capable of modeling implicit fea-
ture interactions and have been widely integrated into existing CTR
prediction methods [8, 11, 19]. To investigate whether integrating
implicit feature interactions further improves the performance, we
combine AutoInt with a two-layer feed-forward neural network by
joint training. We name the joint model AutoInt+ and compare it
with the following algorithms:
• Wide&Deep [8]. Wide&Deep integrates the outputs of logistic
regression and feed-forward neural networks.

• DeepFM [11]. DeepFM combines trainditional second-order fac-
torization machines and feed-forward neural network, with a
shared embedding layer.

• Deep&Cross [38]. Deep&Cross is the extension of CrossNet by
integrating feed-forward neural networks.

• xDeepFM [19]. xDeepFM is the extension of CIN by integrating
feed-forward neural networks.
Table 5 presents the averaged results (over 10 runs) of joint-

training models. We have the following observations: 1) The perfor-
mance of our method improves by joint training with feed-forward
neural networks on all datasets. This indicates that integrating im-
plicit feature interactions indeed boosts the predictive ability of our
proposed model. However, as can be seen from last two columns,
the magnitude of performance improvement is fairly small com-
pared to other models, showing that our individual model AutoInt
is quite powerful. 2) After integrating implicit feature interactions,
AutoInt+ outperforms all competitive methods, and achieves new
state-of-the-art performances on used CTR prediction data sets.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel CTR prediction model based on
self-attentionmechanism, which can automatically learn high-order
feature interactions in an explicit fashion. The key to our method
is the newly-introduced interacting layer, which allows each fea-
ture to interact with the others and to determine the relevance
through learning. Experimental results on four real-world data sets
demonstrate the e�ectiveness and e�ciency of our proposed model.
Besides, we provide good model explainability via visualizing the
learned combinatorial features. When integrating with implicit
feature interactions captured by feed-forward neural networks,
we achieve better o�ine AUC and Logloss scores compared to the
previous state-of-the-art methods.

For future work , we are interested in incorporating contextual
information into our method and improving its performance for on-
line recommender systems. Besides, we also plan to extend AutoInt
for general machine learning tasks, such as regression, classi�cation
and ranking.
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Figure 1: Overview of our proposed method. The input raw
multi-�eld feature vector is �rst converted to �eld embed-
ding vectors via an embedding layer and represented as a
feature graph, which is then feed into Fi-GNN to model fea-
ture interactions. An attention layer is applied on the out-
put of Fi-GNN to predict the click through rate �̂. Details of
embedding layer and Fi-GNN are illustrated in Figure 2 and
Figure 3 respectively.

and more attention because of the great representative power of
graphs. Early works usually convert graph-structured data into
sequence-structured data to deal with. Inspired by word2vec [18],
the work [19] proposed an unsupervised DeepWalk algorithm to
learn node embedding in graph based on random walks. After
that, [27] proposed a network embedding algorithm LINE, which
preserve the �rst- and second-order structural information. [5] pro-
posed node2vec which introduces a biased random walk. However,
these methods can be computationally expensive and non-optimal
for large graphs.

Graph neural networks (GNN) are designed to tackle these prob-
lems, which are deep learning based methods that operate on the
graph domain. The concept of GNN is �rst proposed by [24]. Gen-
erally, nodes in GNNs interact with neighbors by aggregating infor-
mation from neighborhoods and updating their hidden states. There
have been many variants of GNN with various kinds of aggregators
and updaters proposed these days. Here we only present some rep-
resentative and classical methods. Gated Graph Neural Networks
(GGNN) [12] uses GRU [3] as updater. Graph Convolutional Net-
works (GCN) [10] considers the spectral structure of graphs and
utilizes the convolutional aggregator. GraphSAGE [7] considers the
spatial information. It introduces three kinds of aggregators: mean
aggregator, LSTM aggregator and Pooling aggregator. Graph at-
tention network (GAT) [30] incorporates the attention mechanism
into the propagation step. There are some surveys [33, 36] which
provide more elaborative introduction of various kinds of GNN
models.

Due to convincing performance and high interpretability, GNN
has been a widely applied graph analysis method. Recently, there
are many application of GNN like neural machine translation [1],

semantic segmentation [20], image classi�cation [17], situation
recognition [11], recommendation [32], script event prediction [14],
fashion analysis [4, 13]. GNN is suitable for modeling node inter-
actions on graph-structured features intrinsically. In this work,
we proposed a model Fi-GNN based on GGNN to model feature
interactions on the graph-structured features for CTR prediction.

3 OUR PROPOSED METHOD
We �rst formulate the problem and then introduce the overview
of our proposed method, followed by the elaborate detail of each
component.

3.1 Problem Formulation
Suppose the training dataset consists ofm-�elds categorical fea-
tures (m is the number of feature �elds) and the associated labels
� 2 {0, 1} which indicate user click behaviors. The task of CTR
prediction is to predict �̂ for the input m-�elds features, which
estimates the probability of a user clicking. The key of the task is to
model the sophisticated interactions among di�erent feature �elds.

3.2 Overview
Figure 1 is the overview of our proposed method (m=4). The input
sparsem-�eld feature vector is �rst mapped into sparse one-hot
embedding vectors and then embedded to dense �eld embedding
vectors via the embedding layer and the multi-head self-attention
layer. The �eld embedding vectors are then represented as a feature
graph, where each node corresponds to a feature �eld and di�erent
feature �elds can interact through edges. The task of modeling
interaction can be thus converted to modeling node interactions
on the feature graph. Therefore, the feature graph is feed into our
proposed Fi-GNN to model node interactions. An attention scoring
layer is applied on the output of Fi-GNN to estimate the click-
through rate �̂. In the following, we will introduce the details of
our proposed method.

3.3 Embedding Layer
The multi-�eld categorical feature x is usually sparse and of huge
dimension. Following previous works [6, 21, 22, 31, 35], we repre-
sent each �eld as a one-hot encoding vector and then embed it to a
dense vector, noted as �eld embedding vector. Let us consider the
example in Section 1, a movie {Language: English, Genre: fiction,
Director: Christopher Nolan, Starring: Leonardo DiCaprio } is �rst
transformed into a high-dimensional sparse features via one-hot
encoding:

[1, 0, ..., 0]|      {z      }
Language

, [0, 1, ..., 0]|      {z      }
Genre

, [0, 1, ..., 0]|      {z      }
Director

, [0, 1, ..., 0]|      {z      }
Starring

A �eld-aware embedding layer is then applied upon the one-hot
vectors to embed them to low dimensional, dense real-value �eld
embedding vectors as shown in Figure ??. Likewise, the �eld em-
bedding vectors ofm-�eld feature can be obtained:

E = [e1, e2, e3, ..., em ] ,
where ei 2 Rd denotes the embedding vector of �eld i andd denotes
the dimension of �eld embedding vectors.

Fi-GNN
q Fi-GNN proposes to represent multi-field features in a 

graph structure, and captures the feature interactions 
through node representation learning in the graph.

• Feature interaction via a graph view: nodes represent 
features and edges denote their interactions

Overview of the proposed Fi-GNN.

Fi-GNN: Modeling Feature Interac]ons via Graph Neural Networks for CTR Predic]on. CIKM, 2019.

• Model feature interacPons via Graph Neural Networks 
(GNN)

• Attentional scoring for predictions
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Fi-GNN
q Feature interaction in Fi-GNN: The nodes interact with neighbors and update their states 

in a recurrent fashion. 

Feature interaction in Fi-GNN.

Node Aggrega<on:
The node aggregates the transformed informaPon 
from neighbors and update its state according to 
the aggregated informaPon and history via GRU 
and residual connecPon.

Feature Graph:
The edge weights reflect the importance of 
interacPons between the connected nodes 
(features), which are learned via an aYenPon 
mechanism.

Fi-GNN: Modeling Feature Interac]ons via Graph Neural Networks for CTR Predic]on. CIKM, 2019.

3.4 Multi-head Self-attention Layer
Transformer [29] is prevalent in NLP and has achieved great suc-
cess in many tasks. At the core of Transformer, the multi-head
self-attention mechanism is able to model complicated dependen-
cies between word pairs in multiple semantic subspaces. In the
literature of CTR prediction, we take advantage of the multi-head
self-attention mechanism to capture the complex dependencies
between feature �eld pairs, i.e, pairwise feature interactions, in
di�erent semantic subspaces.

Following [26], given the feature embeddings E, we obtain the
feature representation of features that cover the pairwise interac-
tions of an attention head i via scaled dot-product:

Hi = softmaxi (
QKT
p
dK

)V,

Q =W(Q )
i E,K =W(K )

i E,V =W(V )
i E.

The matrices W(Q )
i 2 Rdi⇥d , W(K )

i 2 Rdi⇥d , W(V )
i 2 Rdi⇥d are

three weight parameters for attention head i , di is the dimension
size of head i , and Hi 2 Rm⇥di .

Then we combine the learnt feature representations of each
head to preserve the pairwise feature interactions in each semantic
subspace:

H1 = ReLU(H1 � H2 � · · · � Hh ),
where � denotes the concatenation operation and h denotes the
number of attention heads. The learnt feature representations H1 2
Rm⇥d 0

are used for the initial node states of the graph neural net-
work, where d 0 =

Õh
i=1 di .

3.5 Feature Graph
Distinguished from the previous works which simply concatenate
the �eld embedding vectors together and feed them into designed
models to learn feature interactions, we represent them in a graph
structure. In particular, We represent each input multi-�eld feature
as a feature graphG = (N , E), where each nodeni 2 N corresponds
to a feature �eld i and di�erent �elds can interact through the
edges, so that |N | =m. Since each two �elds ought to interact, it is
a weighted fully connected graph while the edge weights re�ect
importances of di�erent feature interactions. Accordingly, the task
of modeling feature interactions can be converted to modeling node
interactions on the feature graph.

3.6 Feature Interaction Graph Neural Network
Fi-GNN is designed to model node interactions on the feature graph,
which is based on GGNN [12]. It is able to model the interactions
in a �exible and explicit fashion.
Preliminaries. In Fi-GNN, each nodeni is associatedwith a hidden
state vector hti and the state of graph is composed of these node
states

Ht =
⇥
ht1, h

t
2, h

t
3, ..., h

t
m
⇤
,

where t denote the interaction step. The learnt feature representa-
tions by the multi-head self-attention layer are used for their initial
node statesH1. As shown in Figure 2, the nodes interact and update
their states in a recurrent fashion. At each interaction step, the
nodes aggregate the transformed state information with neighbors,

Figure 2: Framework of Fi-GNN. The nodes interact with
neighbors and update their states in a recurrent fashion. At
each interaction step, each node will �rst aggregate trans-
formed state information from neighbors and then update
its state according to the aggregated information andhistory
via GRU and residual connection.

and then update their node states according to the aggregated in-
formation and history via GRU and residual connection. Next, we
will introduce the details of Fi-GNN elaborately.
State Aggregation. At interaction step t , each node will aggregate
the state information from neighbors. Formally, the aggregated
information of node ni is sum of its neighbors’ transformed state
information,

ati =
’

nj!ni 2E
A[nj ,ni ]Wpht�1j , (1)

where Wp is the transformation function. A 2 Rm⇥m is the adja-
cency matrix containing the edge weights. For example, A[nj ,ni ] is
the weight of edge from node nj to ni , which can re�ect the impor-
tance of their interaction. Apparently, the transformation function
and adjacency matrix decide on the node interactions. Since the in-
teraction on each edge ought to di�er, we aim to achieve edge-wise
interaction, which requires a unique weight and transformation
function for each edge.

(1)A�entional EdgeWeights. The adjacency matrix in the con-
ventional GNN models is usually in the binary form, i.e., only con-
tains 0 and 1. It can only re�ect the connected relation of nodes
but fails to re�ect the importances of their relations. In order to
infer the importances of interactions between di�erent nodes, we
propose to learn the edge weights via an attention mechanism. In
particular, the weight of edge from node ni to node nj is calculated
with their initial node states, i.e., the corresponding �eld embedding
vectors. Formally,

w(ni ,nj ) =
exp(LeakyRelu(Ww

⇥
ei | | ej

⇤
))Õ

k exp(LeakyRelu(Ww [ei | | ek ]))
, (2)

where Ww 2 R2d 0
is a weight matrix, | | is the concatenation op-

eration. The softmax function is utilized to make weights easily
comparable across di�erent nodes. Therefore, the adjacency matrix
is,

A[ni ,nj ] =
(

w(ni ,nj ), if i , j,

0, else .
(3)
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q Taking advantage of the strong representative power of graphs, Fi-GNN captures high-order 
feature interaction in an efficient way.

q Fi-GNN also provides good model explanations for CTR prediction.

Performance comparison.
Heat map of auen+onal edge weights.

Figure 5: Heat map of attentional edge weights at the global-
level on Avazu, which re�ects the importance of relations
between di�erent feature �elds.

of all the samples in Avazu dataset, which can re�ect the relations
between di�erent �elds in a global level. Since they are some anony-
mous feature �elds, we only show the remaining 13 feature �elds
with real meanings.

As can be seen, some feature �elds tend to have a strong relations
with others, such as site_category and site_id. This makes sense
since the two feature �eld both corresponds to the website where
the impressions are put on. They contain the main contextual infor-
mation of impressions. Hour is another feature which have close
relations with others. It is reasonable since Avazu focuses on mobile
scene, where user sur�ng online at any time of a day. The sur�ng
time has strong in�uence on other advertising features. On the
other hand, device_ip and device_id seem to have weak relations
with other feature �elds. This may due to that they nearly equal to
user identity, which is relatively �xed and hard to be in�uenced by
other features.

4.5.2 A�entional Node weights. The attentional node weights
re�ect the importances of feature �elds’ in�uence on the overall
prediction score. Figure 6 presents the heat map of global-level and
case-level attentional node weights. The leftmost is an globally av-
eraged one of all the samples in Avazu dataset. The left four are ran-
domly selected, whose predicted scores are [0.97, 0.12, 0.91, 0.99],
and labels are [1, 0, 1, 1] respectively. At the global level, we can see
that the feature �eld app_category have the strongest in�uence on
the clicking behaviors. It is reasonable since Avazu focuses on mo-
bile scene, where the app is the most important factor. At the case
level, we observe that the �nal clicking behavior mainly depends
on one critical feature �eld in most cases.

5 CONCLUSIONS
In this paper, we point out the limitations of the previous CTR
models which consider multi-�eld features as an unstructured com-
bination of feature �elds. To overcome these limitations, we propose
to represent the multi-�eld features in a graph structure for the

global average cases

Figure 6: Heat map of attentional node weights at both
global- and case-level on Avazu, which re�ects the impor-
tance of di�erent feature �elds on the �nal prediction.

�rst time, where each node corresponds to a feature �eld and di�er-
ent �elds can interact through edges. Therefore, modeling feature
interactions can be converted to modeling node interaction on the
graph. To this end, we design a novel model Fi-GNNwhich is able to
model sophisticated interactions among feature �elds in a �exible
and explicit fashion. Overall, we propose a new paradigm of CTR
prediction: represent multi-�eld features in a graph structure and
convert the task of modeling feature interactions to modeling node
interactions on graphs, which may motivate the future work in this
line.
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Table 2: Performance Comparison of Di�erent methods. The best performance on each dataset and metric are highlighted.
Further analysis is provided in Section 4.2.

Model Type Model Criteo Avazu
AUC RI-AUC Logloss RI-Logloss AUC RI-AUC Logloss RI-Logloss

First-order LR 0.7820 3.00% 0.4695 5.43% 0.7560 2.60% 0.3964 3.63%

Second-order FM [23] 0.7836 2.80% 0.4700 5.55% 0.7706 0.72% 0.3856 0.76%
AFM[34] 0.7938 1.54% 0.4584 2.94% 0.7718 0.57% 0.3854 0.81%

High-order

DeepCrossing [25] 0.8009 0.66% 0.4513 1.35% 0.7643 1.53% 0.3889 1.67%
NFM [8] 0.7957 1.57% 0.4562 2.45% 0.7708 0.70% 0.3864 1.02%
CrossNet [31] 0.7907 1.92% 0.4591 3.10% 0.7667 1.22% 0.3868 1.12%
CIN [15] 0.8009 0.63% 0.4517 1.44% 0.7758 0.05% 0.3829 0.10%
Fi-GNN (ours) 0.8062 0.00% 0.4453 0.00% 0.7762 0.00% 0.3825 0.00%

AFM [34] (B) is a extent of FM, which considers the weight
of di�erent second-order feature interactions by using attention
mechanism. It is one of the state-of-the-art models that model
second-order feature interactions.

DeepCrossing [25] (C) utilizes DNN with residual connections
to learn high-order feature interactions in an implicit fashion.

NFM [8] (C) utilizes a Bi-Interaction Pooling layer to model
the second-order interactions, and then feeds the concatenated
second-order combinatorial features into DNNs to model high-
order interactions.

CrossNet (Deep&Cross) [31] (C) is the core of Deep&Cross
model, which tries to model feature interactions explicitly by taking
outer product of concatenated feature vector at the bit-wise level.

CIN (xDeepFM) [15] (C) is the core of xDeepFM model, which
takes outer product of stacked feature matrix at vector-wise level.

4.1.4 Implementation Details. We implement our method using
Tensor�ow4. The optimal hyper-parameters are determined by
the grid search strategy. Implementation of baselines follows [26].
Dimension of �eld embedding vectors is 16 and batch size is 1024
for all methods. DeepCrossing has four feed-forward layers, each
with 100 hidden units. NFM has one hidden layer of size 200 on
top of Bi-Interaction layer as recommended in the paper [8]. There
are three interaction layers for both CrossNet and CIN. All the
experiments were conducted over a sever equipped with 8 NVIDIA
Titan X GPUs.

4.2 Model Comparison (RQ1)
The performance of di�erent methods is summarized in Table 2,
from which we can obtain the following observations:

(1) LR achieves the worst performance among these baselines,
which proves that the individual features is insu�cient in
CTR prediction.

(2) FM andAFM, whichmodel second-order feature interactions,
outperform LR on all datasets, indicating that it’s e�ective
to model pair-wise interaction between feature �elds. In
addition, AFM achieves better performance than FM, which
proves the e�ectiveness of attention on di�erent interactions.

(3) The methods modeling high-order interaction mostly out-
perform the methods that model second-order interactions.

4The code is released at https://github.com/CRIPAC-DIG/Fi_GNN

This indicates the second-order feature interactions is not
su�cient.

(4) DeepCrossing outperforms NFM, proving the e�ectiveness
of residual connections in CTR prediction.

(5) Our proposed Fi-GNN achieves best performance among all
these methods on two datasets. Considering the fact that pre-
vious improvements with respect to AUC at 0.001-level are
regarded signi�cant for CTR prediction task, our proposed
method shows great superiority over these state-of-the-arts
especially on Criteo dataset, owing to the great representa-
tive power of graph structure and the e�ectiveness of GNN
on modeling node interactions.

(6) Compared with these baselines, the relative improvement
of our model achieves on Criteo dataset is higher than that
on Avazu dataset. This might be attributed to that there are
more feature �elds in Criteo dataset, which can take more
advantage of the representative power of graph structure.

4.3 Ablation Study (RQ2)
Our proposed model Fi-GNN is based on GGNN, upon which we
mainly make two improvements: (1) we achieve edge-wise node
interactions via attentional edge weights and edge-wise transfor-
mation; (2) we introduce extra residual connections to update state
along with GRU. To evaluate the e�ectiveness of the two improve-
ments on modeling node interactions, we conduct ablation study
and compare the following three variants of Fi-GNN:

Fi-GNN(-E/R): Fi-GNN without the two above mentioned im-
provements: edge-wise node interactions (E) and residual connec-
tions (R).

Fi-GNN(-E): Fi-GNN without edge-wise interactions (E).
Fi-GNN(-R): Fi-GNN without residual connections (R), which

is also GGNN with edge-wise interactions.
The performance comparison is shown in Figure 3(a), fromwhich

we can obtain the following observations:

(1) Compared with FiGNNïĳŇthe performance of Fi-GNN(-E)
drops by a large margin, suggesting that it’s crucial to model
the edge-wise interaction. Fi-GNN(-E) achieves better per-
formance than Fi-GNN(-E/R), proving that the residual con-
nections can indeed provide useful information.

(2) The full model Fi-GNN outperforms the three variants, in-
dicating that the two improvements we make, i.e., residual
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Automatic Feature Generation
q The related works on automatic feature generation can be roughly divided 

into two categories:

• DNN-based methods
• Search-based methods

DNN-based methods design specific neural
architectures to express the interactions 
among different features.
• Implicit feature generation
• One-shot training course
• Lack of interpretable rules for feature 

interactions

Search-based methods focus on designing 
different search strategies that prune as much 
of the candidates to be evaluated as possible, 
while aiming to keep the most useful interactive 
features.
• Explicit feature generation
• Trial-and-error training manner
• Need lots of time and computing resource
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AutoCross
q AutoCross searches useful feature interacPons in the high-order interacPve feature space by 

incrementally construcPng local opPmal feature set

• Multi-granularity discretization
• Greedy & beam search
• Field-wise logistic regression
• Successive mini-batch gradient descent

An illustration of multi-granularity discretization.

Mul<-granularity discre<za<on:
• For automaPc discrePzaPon, each numerical 

feature is discrePzed into several categorical 
features with different granulariPes.

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.

approximation of E(S), with accuracy traded for higher e�ciency.
However, since the purpose of feature set evaluation is to identify
the most promising candidate, rather than to accurately estimate the
performance of candidates, a degraded accuracy is acceptable if only
it can recognize the best candidate with high probability. Experi-
mental results reported in Section 5 demonstrate the e�ectiveness
of �eld-wise LR.

After a candidate is selected to replace the current solution S⇤
(Step 6, Algorithm 1), we train an LR model with the new S⇤,
evaluate its performance, and update bsum for data blocks that will
be used in the next iteration. Details will be discussed immediately.

4.3.2 Successive Mini-batch Gradient Descent. In AutoCross, we
use a successive mini-batch gradient descent method to further
accelerate �eld-wise LR training. It is motivated by the successive
halving algorithm [18] whichwas originally proposed formulti-arm
bandit problems. Successive halving features an e�cient allocation
of computing resources and high simplicity. In our case, we consider
each candidate feature set as an arm, and a pull of the arm is to
train the corresponding �eld-wise LR model with a data block. The
instant reward of pulling an arm is the resulting validation AUC of
the partially trained model. The training data is equally split into
N � Õ dlog2 n e�1

k=0 2k data blocks, where n is the number of candi-
dates. Then we invoke Algorithm 2 to identify the best candidate
feature set. Successive mini-batch gradient descent allocates more
resources to more promising candidates. The only hyper-parameter
N , namely the number of data blocks, is adaptively chosen accord-
ing to the size of data set and the working environment. Users do
not need to tune the mini-batch size and sample ratios that are
critical for vanilla subsampling.

Algorithm 2 Successive Mini-batch Gradient Descent (SMBGD).
Require: set of candidate feature sets S = {Si }ni=1, training data equally

divided into N � Õdlog2 ne�1
k=0 2k data blocks.

Ensure: best candidate S0.
1: for k = 0, 1, · · · , dlog2 n e � 1 do
2: use additional 2k data blocks to update the �eld-wise LR models of

all S 2 S, with warm-starting;
3: evaluate the models of all S’s with validation AUC;
4: keep the top half of candidates in S: S  top_half(S) (rounding

down);
5: break if S contains only one element;
6: end for
7: return S0 (the singleton element of S).

4.4 Preprocessing
In AutoCross, we use discretization in the data preprocessing step
to enable feature crossing between numerical and categorical fea-
tures. Discretization has been proven useful to improve predicting
capability of numerical features [5, 24, 27]. The most simple and
widely-used discretization method is equal-width discretization,
i.e., to split the value range of a feature into several equal-width
intervals. However, in traditional machine learning applications,
the number of intervals, named as granularity in our work, has a
great impact on the learning performance and should be carefully
determined by human experts.

original
numerical feature

lower bound upper bound

value

0 1 2 3 4 5 6 7 8 91st
discretized feature

0 1 2 3 42nd
discretized feature

0 1 2 33nd
discretized feature

0 1 24nd
discretized feature

decreasing
granularity

Figure 5: An illustration of multi-granularity discretization.
Shade indicates the value taken by each discretized feature.

In order to automate discretization and spare its dependence
on human experts, we propose a multi-granularity discretization
method. The basic idea is simple: instead of using a �ne-tuned
granularity, we discretize each numerical feature into several, rather
than only one, categorical features, each with a di�erent granularity.
Figure 5 gives an illustration of discretizing a numerical feature
with four levels of granularity. Since more levels of granularity are
considered, it is more likely to get a promising result.

In order to avoid the dramatic increase in feature number caused
by discretization, once these features are generated, we use �eld-
wise LR (without considering bsum ) to evaluate them and keep
only the best half. A remaining problem is how to determine the
levels of granularity. For an experienced user, she can set a group of
potentially good values. If no values are speci�ed, AutoCross will
use {10p }Pp=1 as default values, where P is an integer determined
by a rule-based mechanism that considers the available memory,
data size and feature numbers.

In addition, AutoCross will invoke a tuning procedure in the
preprocessing step to �nd optimal hyper-parameters for LR models.
They will be used in all LR models involved subsequently.

4.5 Termination
Three kinds of termination conditions are used in AutoCross: 1)
runtime condition: the user can set a maximal runtime of AutoCross.
When the time elapses, AutoCross terminates outputs the current
solution S⇤. Additionally, the user can always interrupt the proce-
dure and get the result of the time; 2) performance condition: after a
new feature set is generated (Step 6, Algorithm 1), an LR model is
trained with all its features. If, compared with the former set, the
validation performance degrades, the procedure is terminated; 3)
maximal feature number : the user can give a maximal cross feature
number so that AutoCross stops when the number is reached.

5 EXPERIMENTS
In this section, we demonstrate the e�ectiveness and e�ciency of
AutoCross. First, by comparing AutoCross with several reference
methods on both benchmark and real-world business datasets, we
show that with feature crossing it can signi�cantly improve the per-
formance of both linear and deep models, and that high-order cross
features are useful. Then we report the time costs of feature cross-
ing with AutoCross. Finally, we show the advantage of AutoCross
in real-time inference.
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AutoCross
q AutoCross searches useful feature interacPons in the high-order interacPve feature space by 

incrementally construcPng local opPmal feature set

• MulP-granularity discrePzaPon
• Greedy & beam search
• Field-wise logisPc regression
• Successive mini-batch gradient descent

An illustration of the search space and beam search
strategy.

Greedy & beam search:
• Tree-structured space with the original 

features as the root.
• The children are generated by added one 

pair-wise crossing to the parent.
• Only the most promising child will be 

expanded during the search

AutoCross: Automa]c Feature Crossing for Tabular Data in Real-World Applica]ons. KDD, 2019.

in model training, or the learned model in inference. It employs
hashing trick [39] to improve the accelerate feature producing.
Compared with deep-learning-based methods, the feature producer
takes signi�cantly less computation resources, and is hence espe-
cially suitable for real-time inference.

Inside the black box (‘�ow’ part in Figure 2), the data will �rst
be preprocessed, where hyper-parameters are determined, missing
values �lled and numerical features discretized. Afterwards, useful
feature sets are iteratively constructed in a loop consisting of two
steps: 1) feature set generation, where candidate feature sets with
new cross features are generated; and 2) feature set evaluation,
where candidate feature sets are evaluated and the best is selected
as a new solution. This iterative procedure is terminated once some
conditions are met.

From the implementation perspective (‘infrastructures’ part in
Figure 2), the foundation of AutoCross is a distributed computing
environment based on the well-known parameter server (PS) archi-
tecture [25]. Data is cached in memory by blocks, where each block
contains a small subset of the training data.Workers visit the cached
data blocks, generate corresponding features, and evaluate them.
A feature manager takes control over the feature set generation
and evaluation. A process manager controls the whole procedure
of feature crossing, including hyper-parameter adaptation, data
preprocessing, work �ow control, and program termination.

The algorithms, that bridge the work �ow and infrastructures,
are the main focus of this paper (‘algorithms’ part of Figure 2). Each
algorithm corresponds to a part in the work �ow: we employ beam
search for feature set generation to explore an extensive search
space (Section 4.2), �eld-wise logistic regression and successive
mini-batch gradient descent for feature set evaluation (Section 4.3),
and multi-granularity discretization for data preprocessing (Sec-
tion 4.4). These algorithms are chosen, designed, and optimizedwith
the considerations of simplicity and costs of distributed computing,
as will be detailed in the next section.

4 METHOD
In this section, we detail the algorithms used in AutoCross. We
focus on the binary classi�cation problem. It is not only the subject
of most existing works [5, 7, 21, 26, 34], but also the most widely
considered problem in real-world businesses [3, 4, 10, 23, 38, 41].

4.1 Problem De�nition
For the ease of discussion, �rst we assume that all the original
features are categorical. The data is represented in the multi-�eld
categorical form [26, 37, 42], where each �eld is a binary vector
generated from a categorical feature by encoding (one-hot encod-
ing or hashing trick). Given training data DTR , we split it into a
sub-training setDtr and a validation setD�ld . Then, we represent
Dtr with a feature set S, and with learning algorithm L learn a
model L(Dtr ,S). To evaluate this model, we represent the valida-
tion set D�ld with the same feature set S and calculate a metric
E (L(Dtr ,S),D�ld ,S), which should be maximized.

Now, we formally de�ne the feature crossing problem as:

max
S✓A(F)

E (L(Dtr ,S),D�ld ,S) , (4)

A, B, C, D

+ AB + AC + CD…

+ AC + CD… + ABC + ABD

+ AC + BD + BCD + ABCD… …

+ AC + ABC + BCD + ABCD… …

Figure 3: An illustration of the search space and beam search
strategy employed in AutoCross. In beam search, only the
best node (bold stroke) at each level is expanded.We use two
colors to indicate the two features that are used to construct
the new cross feature.

where F is the original feature set of DTR , and A(F ) is the set of
all original features and possible cross features generated from F .

4.2 Feature Set Generation
In this subsection, we introduce the feature set generation method
in AutoCross, which also determines the main search strategy.

We consider the feature crossing problem (Problem (4)). Assume
the size of the original feature set is d , which is also the highest
order of cross features. The size of A(F ) is:

card (A(F )) =
d’
k=1

C(d,k) = 2d � 1, (5)

and the number of all possible feature sets is 2(2
d�1), a double

exponential function of d . Obviously, it is impractical to search for
an globally optimal feature set in such an extensive space. In order
to �nd a moderate solution with limited time and computational
resources, we employ a greedy approach to iteratively construct a
locally optimal feature set.

In AutoCross, we consider a tree-structured space T depicted in
Figure 3, where each node corresponds to a feature set and the root
is the original feature set F . 2 For simplicity, in this example, we
denote the crossing of two features A and B as AB, and higher-order
cross features in similar ways. For a node (a feature set), its each
child is constructed by adding to itself one pair-wise crossing of its
own elements. The pair-wise interactions between cross features
(or a cross feature and an original feature) will lead to high-order
feature crossing. The new space T considers all possible features
in A(F ), but excludes part of its subsets. With T , to search for a
feature set is equivalent to identifying a path from the root of T
to a speci�c node. This can be done by iteratively adding cross
features into a maintained feature set. However, the size of T is
O

⇣
(d2/2)k

⌘
where k is the maximum number of generated cross

features. It grows exponentially with k . Hence, it will be extremely
expensive to exhaustively visit all possible solutions, or in other

2 In Figure 3 only one node at each level is expanded. This is because we use beam
search strategy. It should be noted that the search space T is a fully expanded tree.
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AutoCross
q AutoCross searches useful feature interacPons in the high-order interacPve feature space by 

incrementally construcPng local opPmal feature set

• MulP-granularity discrePzaPon
• Greedy & beam search
• Field-wise logisPc regression
• Successive mini-batch gradient descent

Field-wise logis<c regression :
• For each node, the weights of the newly 

added interacPve features are updated 
during training, while other weights are 
inherited from the parent and fixed.

Successive mini-batch gradient descent :
• The data are split into several blocks, 

and gradually added into the training 
process along with narrowing the 
candidate interactive features.

AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD, 2019.
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q The advantages of AutoCross:
• Explicit high-order feature generaPon
• Fast inference
• Interpretability

The number of second/high-order interac+ve features. Inference latency comparison.

Table 4: Test AUC improvement v.s. LR (base) and Deep.
AC+LR v.s. LR (base)

Bank Adult Credit Employee Criteo Average
0.585% 1.211% 3.316% 3.316% 2.279% 2.141%
Data1 Data2 Data3 Data4 Data5 Average
2.115% 2.154% 1.509% 2.599% 6.692% 3.014%

AC+W&D v.s. LR (base)
Bank Adult Credit Employee Criteo Average
0.213% 0.992% 3.992% 4.367% 2.712% 2.455%
Data1 Data2 Data3 Data4 Data5 Average
1.948% 2.346% 0.948% 2.338% 9.546% 3.368%

AC+W&D v.s. Deep
Bank Adult Credit Employee Criteo Average
0.021% 1.424% 3.035% 3.293% 1.039% 1.763%
Data1 Data2 Data3 Data4 Data5 Average
0.6133% 1.0516% 1.2976% 0.8539% 0.5361% 0.880%

by CMI+LR, that only generates second-order cross features, and
AC+LR that considers high-order feature crossing. We can see that
AC+LR stably and constantly outperforms CMI+LR. This result
demonstrates the usefulness of high-order cross features.

Figure 6: The number of second/high-order cross features
generated for each dataset.

Table 5: Test AUC improvement: second v.s. high order fea-
tures on benchmark datasets.

v.s. LR(base) Bank Adult Credit Employee Criteo Average
CMI+LR 0.330% -0.175% 0.531% 2.842% -0.140% 0.678%
AC+LR 0.585% 1.211% 3.316% 3.316% 2.279% 2.141%

5.2.3 Time costs of feature crossing. Table 6 reports the feature
crossing time of AutoCross on each dataset. Figure 7 shows the
validation AUC (AC+LR) versus runtime on real-world business
datasets. Such curves are visible to the user and she can terminate
AutoCross at any time to get the current result. It is notable that
due to the high simplicity of AutoCross, no hyper-parameter needs
to be �ne-tuned, and the user does not need to spend any extra
time to get it work. In contrast, if deep-learning-based methods
are used, plenty of time will be spent on the network architecture
design and hyper-parameter tuning.

5.2.4 Inference Latency. In many real-world businesses, the appli-
cation scenario of a feature generation tool comprises three stages:
1) o�-line feature generation; 2) o�-line/online model training; 3)
online inference. In this scenario, the o�-line generation stage is
invoked the least frequently, for instance, features can be generated

Table 6: Cross feature generation time (unit: hour).
Benchmark Datasets

Bank Adult Credit Employee Criteo
0.0267 0.0357 0.3144 0.0507 3.0817

Real-World Business Datasets
Data1 Data2 Data3 Data4 Data5
0.9327 0.7973 1.5206 2.7572 5.1861

Figure 7: Validation AUC curves in real-business datasets.

weekly or even monthly. In contrast, within every millisecond, hun-
dreds or thousands of inferences may sequentially take place, which
makes high e�ciency a must. Online inference consists of two ma-
jor steps: 1) feature producing to transform the input data, and
2) inference to make prediction. Deep-learning method combines
these steps. In Table 7, we report the inference time of AC+LR,
AC+W&D, Deep and xDeepFM.

Table 7: Inference latency comparison (unit: millisecond).
Benchmark Datasets

Method Bank Adult Credit Employee Criteo
AC+LR 0.00048 0.00048 0.00062 0.00073 0.00156
AC+W&D 0.01697 0.01493 0.00974 0.02807 0.02698

Deep 0.01413 0.01142 0.00726 0.02166 0.01941
xDeepFM 0.08828 0.05522 0.04466 0.06467 0.18985

Real-World Business Datasets
Method Data1 Data2 Data3 Data4 Data5
AC+LR 0.00367 0.00111 0.00185 0.00393 0.00279
AC+W&D 0.03537 0.01706 0.04042 0.02434 0.02582

Deep 0.02616 0.01348 0.03150 0.01414 0.01406
xDeepFM 0.32435 0.11415 0.40746 0.12467 0.13235

It can be easily observed that AC+LR is orders of magnitude
faster than other methods in inference. This demonstrates that,
AutoCross can not only improve the model performance, but also
ensure fast inference with its feature producer.

6 RELATED WORKS
In this section, we brie�y review works that are loosely related to
AutoCross and demonstrate why they do not suit our purpose.
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AutoFIS

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD, 2020.

q AutoFIS automatically identifies important feature interactions for Factorization Models (FM).

• Search Stage: Learn the relaPve importance of each feature interacPon 
via architecture parameters within one full training process.

• Re-train Stage:  Remove the unimportance interacPons and re-train the 
resulPng neural networks.

Overview of AutoFIS.
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AutoFIS

AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. KDD, 2020.

q Experiments on large-scale datasets demonstrate that AutoFIS can improve various FM 
based models in CTR predicPon tasks.

Performance comparison.

Correlations between the architecture parameters 𝛼 and AUC.

(3) All such performance boost could be achieved with marginal
time cost (for example, it takes 24 minutes and 128 minutes for
AutoDeepFM(3rd) to search important 2nd - and 3rd -order fea-
ture interactions in Avazu and Criteo with a single GPU card).
The same result might take the human engineers many hours or
days to achieve by identifying such important feature interac-
tions manually.

Note that directly enumerating the 3rd -order feature interactions
in FM and DeepFM enlarges the inference time about 7 to 12 times,
which is unacceptable in industrial applications.

4.4 Transferability of the Selected Feature
Interactions (RQ2)

Table 4: Performance of transferring interactions selected by Aut-
oFM to IPNN. AutoIPNN(2nd) indicates IPNN with 2nd -order inter-
actions selected byAutoFM(2nd) andAutoIPNN(3rd) indicates IPNN
with 2nd - and 3rd -order interactions selected by AutoFM(3rd).

Model Avazu Criteo
AUC log loss time(s) AUC log loss time(s)

IPNN 0.7868 0.3756 0.91 0.8013 0.5401 1.26
AutoIPNN(2nd) 0.7869 0.3755 0.58 0.8015 0.5399 0.76
AutoIPNN(3rd) 0.7885* 0.3746* 0.71 0.8019* 0.5392* 0.86

⇤ denotes statistically signi�cant improvement (measured by t-test with p-value<0.005).

In this subsection, we investigate whether the feature interac-
tions learned by AutoFM (which is a simple model) could be trans-
ferred to the state-of-the-art models such as IPNN to boost their
performance. As shown in Table 4, using 2nd -order feature in-
teractions selected by AutoFM (namely AutoIPNN(2nd)) achieves
comparable performance to IPNN, with around 30% and 50% of all
the interactions in Avazu and Criteo. Moreover, the performance is
signi�cantly improved by using both 2nd - and 3rd -order feature
interactions (namely AutoIPNN(3rd)) selected by AutoFM. Both evi-
dences verify the transferability of the selected feature interactions
in AutoFM.

4.5 The E�ectiveness of Feature Interaction
Selected by AutoFIS (RQ3)

In this subsection, we will discuss the e�ectiveness of feature inter-
action selected by AutoFIS. We conduct experiments on real data
and synthetic data to analyze it.

4.5.1 The E�ectiveness of selected feature interaction on Real Data.
We de�ne statistics_AUC to represent the importance of a feature
interaction to the �nal prediction. For a given interaction, we con-
struct a predictor only considering this interaction where the predic-
tion of a test instance is the statistical CTR (#downloads/#impressions)
of speci�ed feature interaction in the training set. Then the AUC
of this predictor is statistics_AUC with respect to this given fea-
ture interaction. Higher statistics_AUC indicates a more important
role of this feature interaction in prediction. Then we visualize the
relationship between statistics_AUC and � value.

As shown in Figure 3, we can �nd that most of the feature
interactions selected by our model (with high absolute � value)
have high statistics_AUC, but not all feature interactions with high
statistics_AUC are selected. That is because the information in
these interactions may also exist in other interactions which are
selected by our model.

0.00 0.05 0.10 0.15 0.20 0.25

the absolute value of α

0.55

0.60

0.65

0.70

6t
at

is
tic

s_
AU

C

Figure 3: Relationship between statistics_AUC and � value for
each second-order interaction

Table 5: Performance comparison between the model with interac-
tions selected by ourmodel and by statistics_AUC onAvazu Dataset

Model AUC log loss
Selected by statistics_AUC 0.7804 0.3794

Selected by AutoFM 0.7831 0.3778

To evaluate the e�ectiveness of the selected interactions by our
model, we also select the top-N (N is the number of second-order
feature interactions selected by our model) interactions based on
statistics_AUC and re-train the model with these interactions. As
shown in Table 5, the performance of our model is much better
than the model with selected interactions by statistics_AUC with
same computational cost.

4.5.2 The E�ectiveness of selected feature interaction on Synthetic
Data. In this section, we conduct a synthetic experiment to validate
the e�ectiveness of selected feature interaction.

This synthetic dataset is generated from an incomplete poly-2
function, where the bi-linear terms are analogous to interactions
between categories. Based on this dataset, we investigate (i) whether
our model could �nd the important interactions (ii) the performance
of our model compared with other factorization machine models.

The input x of this dataset is randomly sampled from N cate-
gories ofm �elds. The output � is binary labeled depending on the
sum of linear terms and parts of bi-linear terms.

� = � (
m’
i=1

wixi +
’
i, j 2C

�i, jxix j + b + �) (16)

� (z) =
⇢ 1, i f z � threshold

0, otherwise
(17)

The data distribution p(x), selected bi-linear term setsC andw,v,b
are randomly sampled and �xed. The data pairs are i .i .d . sampled
to build the training and test datasets. We also add a small random
noise � to the sampled data. We use FM and our model to �t the
synthetic data. We use AUC to evaluate these models on the test
dataset.

We choose m = 6,N = 60 to test the e�ectiveness of our
model. Selected bi-linear term sets C is randomly initialized as
C = {(x0,x1), (x2,x5), (x3,x4)}. Figure 4 presents the performance
comparison between our model and FM, which demonstrates the
superiority of our model. As shown in Figure 5, our model could
extract the important interactions precisely. The interactions in
C have the highest � and some unimportant interactions (with �
value 0) have been removed.

Table 1: Benchmark performance: "time" is the inference time for 2 million samples. "top" represents the percentage of feature interactions
kept for 2nd / 3rd order interaction. "cost" contain the GPU time of the search and re-train stage. "Rel. Impr." is the relative AUC improvement
over FM model. Note: FFM has a lower time and cost due to its smaller embedding size limited by GPU memory constraint.

Model
Avazu Criteo

AUC log loss top time (s) search + re-train Rel. Impr. AUC log loss top time (s) search + re-train Rel. Impr.cost (min) cost (min)
FM 0.7793 0.3805 100% 0.51 0 + 3 0 0.7909 0.5500 100% 0.74 0 + 11 0

FwFM 0.7822 0.3784 100% 0.52 0 + 4 0.37% 0.7948 0.5475 100% 0.76 0 + 12 0.49%
AFM 0.7806 0.3794 100% 1.92 0 + 14 0.17% 0.7913 0.5517 100% 1.43 0 + 20 0.05%
FFM 0.7831 0.3781 100% 0.24 0 + 6 0.49% 0.7980 0.5438 100% 0.49 0 + 39 0.90%

DeepFM 0.7836 0.3776 100% 0.76 0 + 6 0.55% 0.7991 0.5423 100% 1.17 0 + 16 1.04%
GBDT+LR 0.7721 0.3841 100% 0.45 8 + 3 -0.92% 0.7871 0.5556 100% 0.62 40 + 10 -0.48%
GBDT+FFM 0.7835 0.3777 100% 2.66 6 + 21 0.54% 0.7988 0.5430 100% 1.68 9 + 57 1.00%
AutoFM(2nd) 0.7831* 0.3778* 29% 0.23 4 + 2 0.49% 0.7974* 0.5446* 51% 0.48 14 + 9 0.82%

AutoDeepFM(2nd) 0.7852* 0.3765* 24% 0.48 7 + 4 0.76% 0.8009* 0.5404* 28% 0.69 22 + 11 1.26%

FM(3rd) 0.7843 0.3772 100% 5.70 0 + 21 0.64% 0.7965 0.5457 100% 8.21 0 + 72 0.71%
DeepFM(3rd) 0.7854 0.3765 100% 5.97 0 + 23 0.78% 0.7999 0.5418 100% 13.07 0 + 125 1.14%
AutoFM(3rd) 0.7860* 0.3762* 25% / 2% 0.33 22 + 5 0.86% 0.7983* 0.5436* 35% / 1% 0.63 75 + 15 0.94%

AutoDeepFM(3rd) 0.7870* 0.3756* 21% / 10% 0.94 24 + 10 0.99% 0.8010* 0.5404* 13% / 2% 0.86 128 + 17 1.28%
⇤ denotes statistically signi�cant improvement (measured by t-test with p-value<0.005) over baselines with same order. AutoFM compares with FM and AutoDeepFM compares with all baselines.

validation with 20% for testing. Categories with less than 20 times
of appearance are removed for dimensionality reduction.

Criteo4: Criteo contains one month of click logs with billions
of data samples. We select "data 6-12" as training and validation
set while selecting "day-13" for evaluation. To counter label im-
balance, negative down-sampling is applied to keep the positive
ratio roughly at 50%. 13 numerical �elds are converted into one-hot
features through bucketing, where the features in a certain �eld
appearing less than 20 times are set as a dummy feature "other".

Private: Private dataset is collected from a game recommenda-
tion scenario in Huawei App Store. The dataset contains app fea-
tures (e.g., ID, category), user features (e.g., user’s behavior history)
and context features. Statistics of all the datasets are summarized
in Table 2.

Table 2: Dataset Statistics
Dataset #instances #dimension #�elds pos ratio
Avazu 4 ⇥ 107 6 ⇥ 105 24 0.17
Criteo 1 ⇥ 108 1 ⇥ 106 39 0.50
Private 2 ⇥ 108 3 ⇥ 105 29 0.02

4.2 Experimental Settings
4.2.1 Baselines and EvaluationMetrics. WeapplyAutoFIS to FM [27]
and DeepFM [8] models to show its e�ectiveness (denoted as Aut-
oFM and AutoDeepFM, respectively). We compare it with GBDT-
based methods (GBDT+LR [11], GBDT+FFM [15]) and Factorization
Machine models (AFM [30], FwFM [23], FFM [14], IPNN [25]). Due
to its huge computational costs and the unavailability of the source
code, we do not compare our models with AutoCross [21].

The common evaluation metrics for CTR prediction are AUC
(Area Under ROC) and Log loss (cross-entropy).

4.2.2 Parameter Se�ings. To enable any one to reproduce the ex-
perimental results, we have attached all the hyper-parameters for
each model in the supplementary material.

4.2.3 Implementation Details. Selecting 2nd -order feature interac-
tions for AutoFM and AutoDeepFM, in the search stage, we �rst
train the model with � andv jointly on all the training data. Then
we remove those useless interactions and re-train our model.

To implement AutoFM and AutoDeepFM for 3rd -order feature
interaction selection, we reuse the selected 2nd -order interactions
in Equation 15 and enumerate all the 3rd -order feature interactions

4http://labs.criteo.com/downloads/download-terabyte-click-logs/

in the search stage to learn their importance. Finally, we re-train
our model with the selected 2nd - and 3rd -order interactions.

Note that in the search stage, the architecture parameters �
are optimized by GRDA optimizer and other parameters v are
optimized by Adam optimizer. In the re-train stage, all parameters
are optimized by Adam optimizer.
Table 3: Performance in Private Dataset. "Rel. Impr." is the relative
AUC improvement over FM model.

Model AUC log loss top ReI. Impr
FM 0.8880 0.08881 100% 0

FwFM 0.8897 0.08826 100% 0.19%
AFM 0.8915 0.08772 100% 0.39%
FFM 0.8921 0.08816 100% 0.46%

DeepFM 0.8948 0.08735 100% 0.77%
AutoFM(2nd) 0.8944* 0.08665* 37% 0.72%

AutoDeepFM(2nd) 0.8979* 0.08560* 15% 1.11%

⇤ denotes statistically signi�cant improvement (measured by t-test with p-value<0.005).
AutoFM compares with FM and AutoDeepFM compares with all baselines.

4.3 Feature Interaction Selection by AutoFIS
(RQ1)

Table 1 summarizes the performance of AutoFM and AutoDeepFM
by automatically selecting 2nd - and 3rd -order important interac-
tions on Avazu and Criteo datasets and Table 3 reports their perfor-
mance on Private dataset. We can observe:
(1) For Avazu dataset, 71% of the 2nd -order interactions can be re-

moved for FM and 76% for DeepFM. Removing those useless
interactions can not only make the model faster at inference
time: the inference time of AutoFM(2nd) and AutoDeepFM(2nd)
is apparently less than FM and DeepFM; but also signi�cantly
increase the prediction accuracy: the relative performance im-
provement of AutoFM(2nd) over FM is 0.49% and that of Au-
toDeepFM(2nd) over DeepFM is 0.20% in terms of AUC. Similar
improvement can also be drawn from the other datasets.

(2) For high-order feature interaction selection, only 2% – 10% of
all the 3rd -order feature interactions need to be included in the
model. The inference time of AutoFM(3rd) and AutoDeepFM(3rd)
is much less than that of FM(3rd) and DeepFM(3rd) (which is
comparable to FM and DeepFM). Meanwhile, the accuracy is
signi�cantly improved by removing unimportant 3rd -order fea-
ture interactions, i.e., the relative performance improvement of
AutoFM(3rd) over FM(3rd) is 0.22% and that of AutoDeepFM(3rd)
over DeepFM(3rd) is 0.20% in terms of AUC on Avazu. Observa-
tions on Criteo are similar.
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FIVES

FIVES: Feature Interac]on Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

q To possess both feature interpretability and search efficiency, the proposed method FIVES formulates 
the task of interactive feature generation as searching for edges on the defined feature graph.

1. Search Strategy

• This proposiPon states that informaPve 
interacPve features unlikely come from the 
uninformaPve lower-order ones. 

• The theory moPvates the boYom-up search 
strategy in FIVES: Searching for a group of 
informaPve 𝑘-order features from the 
interacPons between original features and the 
group of (𝑘 − 1)-order features.Theoretical support for the search strategy.

2.2 Search Strategy
As aforementioned, exhaustively traversal of the exponentially
growing interactive feature space seems intractable. By De�nition 1,
any :-order interactive features could be regarded as the interaction
(i.e., Cartesian product) of several lower-order features, with many
choices of the decomposition. This raises a question that could we
solve the task of generating interactive features in a bottom-up
manner? To be speci�c, could we generate interactive features in
an inductive manner, that is, searching for a group of informative :-
order features from the interactions between original features and
the group of (: � 1)-order features identi�ed in previous step? We
present the following proposition to provide theoretical evidence
for discussing the question.

P���������� 1. Let -1,-2 and . be Bernoulli random variables
with a joint conditional probability mass function, ?G1,G2 |~ := P(-1 =
G1;-2 = G2 | . = ~) such that G1, G2,~ 2 {0, 1}. Suppose further that
mutual information between -8 and . satis�es I(-8 ;. ) < ! where
8 2 {1, 2} and ! is a non-negative constant. If -1 and -2 are weakly
correlated given ~ 2 {0, 1}, that is,

���⇠>E (-1,-2 |.=~)
f-1 |.=~f-2 |.=~

���  d , we have

I(-1-2;. ) < 2! + log(2d2 + 1). (1)

We defer the proof to Appendix A. Speci�cally, the random vari-
able - and . stands for the feature and the label respectively, and
the joint of - s stands for their interaction. Recall that: 1) As the
considered raw features are categorical, modeling each feature as a
Bernoulli random variable would not sacri�ce much generality; 2)
In practice, the raw features are preprocessed to remove redundant
ones, so the weak correlation assumption holds. Based on these,
our proposition indicates that, for small d we have log(2d2 +1) ⇡ 0,
thereby the information gain introduced by interaction of features
is at most that of the individuals. This proposition therefore could
be interpreted as—under practical assumptions, it is unlikely to con-
struct an informative feature from the interaction of uninformative
ones. This proposition supports the bottom-up search strategy, as
lower-order features that have not been identi�ed as informative
are less likely to be a useful building brick of high-order features.
Besides, the identi�ed (: � 1)-order features are recursively con-
structed from the identi�ed ones of lower-orders, and thus they are
likely to include su�cient information for generating informative
:-order features. We also empirically validate this strategy in Sec-
tion 3.2 and Section 3.4. Although this inductive search strategy
cannot guarantee to generate all useful interactive features, the gen-
erated interactive features in such a way are likely to be useful ones,
based on the above proposition. This can be regarded as a trade-o�
between the usefulness of generated interactive features and the
completeness of them, under the constraint of limited computation
resources.

2.3 Modeling
To instantiate our inductive search strategy, we conceptually regard
the original features as a feature graph and model the interactions
among features by a designed GNN.

First, we denote the feature graph as ⌧ = (N , E) where each
node =8 2 N corresponds to a feature 58 and each edge 48, 9 2 E

indicates an interaction between node =8 and node = 9 . We use n(0)8

as the initial node representation for node =8 that conventionally
takes the embedding looked up by 58 from the feature embedding
matrixW� as its value. It is easy to show that, by applying a vanilla
graph convolutional operator to such a graph, the output n(1)8 is
capable of expressing the 2-order interactive features. However,
gradually propagating the node representations with only one adja-
cencymatrix fails to express higher-order (: > 2) interactions. Thus,
to generate at highest  -order interactive features, we extend the
feature graph by de�ning an adjacency tensor A 2 {0, 1} ⇥<⇥< to
indicate the interactions among features at each order, where each
slice A(:)

2 {0, 1}<⇥<,: = 0, . . . , ( � 1) represents a layer-wise
adjacency matrix and< = |N | is the number of original features
(nodes). Once an entry A(:)

8, 9 , 8, 9 2 1, . . . ,< is active, we intend to

generate a (: + 1)-order feature based on node =8 by n(:�1)8 � n(0)9
and synthesize these into n(:)8 . Formally, with an adjacency tensor
A, our dedicated graph convolutional operator produces the node
representations layer-by-layer, in the following way:

n(:)8 = p(:)8 � n(:�1)8

where p(:)8 = MEAN
9 |A(: )

8,9 =1{W9n
(0)
9 }.

(2)

Here “MEAN” is adopted as the aggregator, and � denotes the
element-wise product. W9 is the transformation matrix for node
= 9 , and =

(0)
8 is the initial input to the GNN and described as the

feature embeddings of node =8 . Assume that the capacity of our
GNN and embedding matrix is su�cient for (W9n

(0)
9 ) � n(0)8 to

express 58 ⌦ 59 , we can show that the node representation at :-th
layer n(:) = [n(:)1 , . . . , n(:)< ] corresponds to the generated (: + 1)-
order interactive features:

n(1)8 = MEAN
9 |A(1)

8,9 =1
{W9n

(0)
9 } � n(0)8

= MEAN
9 |A(1)

8,9 =1
{59 ⌦ 58 },

n(:)8 = MEAN
9 |A(: )

8,9 =1{W9n
(0)
9 } � n(:�1)8

⇡ MEAN
(21,...,2: ) |A

( 9 )
8,2 9

=1, 9=1,...,: {521 ⌦ · · · ⌦ 52: ⌦ 58 },

where the choices of which features should be combined are deter-
mined by the adjacency tensor A.

As shown above, the feature graph and the associated GNN is
capable of conceptually expressing our inductive search strategy.
Thus from the perspective of feature graph, the task of generating
interactive features is equivalent to learning an optimal adjacency
tensor A, so-called edge search in our study. In order to evaluate
the quality of generated features, i.e., the learned adjacency tensor
A, we apply a linear output layer to the concatenation of node
representations at each layer:

~̂ (:) = f (W(:)
[n(:)1 : · · · : n(:)< ] + 1 (:) ), (3)

where W(:) and 1 (:) are the projection matrix and bias term re-
spectively, and f (·) denotes the sigmoid function. We pack all the
parameters as Θ = (W� ,W(:) ,1 (:) ,W9 |0  : <  , 1  9  <).
Then we de�ne a cross-entropy loss function (denoted as CE) for
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FIVES

FIVES: Feature Interac]on Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

q To possess both feature interpretability and search efficiency, the proposed method FIVES formulates 
the task of interacPve feature generaPon as searching for edges on the defined feature graph.

2. Feature Graph

• To instantiate the proposed search strategy, the original features are conceptually 
regarded as a feature graph and their interactions are modeled by a designed GNN.

n1

n3

n2

n4

n1

n3

n2

n4

n1

n3

n2

n4

… …

• Each node 𝑛! corresponds to a feature 𝑓!. Each edge 𝑒!,$ indicates an interacPon between 
𝑛! and 𝑛$. 

The constructed feature graph to represent high-order feature interactions.
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FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

q To possess both feature interpretability and search efficiency, the proposed method FIVES formulates 
the task of interactive feature generation as searching for edges on the defined feature graph.

2. Feature Graph

• The feature graph consists of 𝐾 subgraphs to represent high-order interacPve feature. Each 
subgraph indicates a layer-wise interacPon between features, represented by an adjacency 
matrix 𝐴(&) ∈ {0,1}"×". The graph convoluPonal operator for aggregaPon are defined as:

𝑛!
(&) = 𝑝!

(&)⨀ 𝑛!
&)* , where 𝑝!

& = MEAN$|,%,'( -*
𝑊$𝑛$

.

• The node representaPon at 𝑘-th layer corresponds to the generated features:

𝑛!
(&) = MEAN$|,%,'( -*

𝑊$𝑛$
. ⨀𝑛!

&)* ≈ MEAN /),…,/( |,%,*'
' -*,$-*,…,&{𝑓/)⨂…⨂𝑓/(⨂𝑓!}
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FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

q To possess both feature interpretability and search efficiency, the proposed method FIVES formulates 
the task of interactive feature generation as searching for edges on the defined feature graph.

3. Differen<able Edge Search

• The task of generaPng useful interacPve features is equivalent to learning an opPmal adjacency 
tensor 𝐴, so-called edge search.

min
𝑨
ℒ 𝒟234 𝐴, Θ 𝐴 )

s. t. Θ 𝐴 = arg min
5
ℒ (𝒟67389|𝐴, Θ)

• To make the opPmizaPon more efficient, 𝐴 is regraded as Bernoulli random variables parameterized 
by 𝐻 ∈ 0,1 :×"×", and a soa 𝐴(&) is allowed to be used for propagaPon at the 𝑘-th layer.
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FIVES

FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

q To possess both feature interpretability and search efficiency, the proposed method FIVES formulates 
the task of interactive feature generation as searching for edges on the defined feature graph.

4. Interac<ve Feature Deriva<on

An example of interac+ve feature deriva+on.

• The learned adjacency tensor can explicitly indicate 
which interacPve features are useful.

• One can inducPvely derive useful high-order 
interacPve features by specify layer-wise thresholds 
for binarizing the learned 𝐴.

• FIVES serves as a feature generator for lightweight 
models to meet the requirement of inference 
speed.

Algorithm 1 Optimization Algorithm for FIVES

Input: Feature graph ⌧ = (N , E), highest order  , learning rate
U1,U2, and #epochs )

Output: Adjacency tensor A, network parameters Θ
1: Initialize H and Θ; and split data D into Dtrain and Dval;
2: for C = 1, 2, . . . ,) do
3: Calculate A according to Eq. (7);
4: Propagate the graph signal for  times according to Eq. (2);
5: Update Θ by descending U1rΘL(Dtrain |A,Θ);
6: Update H by descending U2rHL(Dval |A,Θ);
7: end for

the learned adjacency tensor A, which means that FIVES can also
serve as a feature generator. In general, we are allowed to specify
layer-wise thresholds for binarizing the learned A and then derive
the useful :-order (1  :   ) interactive features suggested by
A inductively. An example of the interactive feature derivation is
shown in Figure 2.
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Figure 2: Interactive feature derivation

Speci�cally, given an adjacency matrix A(:) , which is the :-th
slice of the binarized adjacency tensor A, we can determine the
feature graph (denoted as “Feature Graph” in the �gure) at the
:-th layer based on it, where A(:)

8, 9 = 1 represents there exists a
directed edge from the start node =8 to the end node = 9 . Then,
we can derive useful interactive features (denoted as “Generated
Features” in the �gure) from the feature graphs layer-by-layer in
an inductively manner. At each layer, a directed edge means to
apply the crossing operation (i.e., ⌦) between each of the features
represented by the start node and that represented by the end node,
which generates some interactive features. As de�ned in Eq. (2),
the features represented by a node are di�erent when it serves as a
start node or an end node. At the :-th layer, when a node =8 serves
as a start node, it represents the interactive features that have been
generated by the edges starting from =8 at the (: � 1)-th order;
elsewise, it just represents the corresponding original feature 58 .
Particularly, when : = 1, no matter a node serves as a start node or
an end node, it represents the corresponding original feature.

Take the instance in Figure 2 as an example: In themiddle column,
=4 is an end node in the connection =1 ! =4, thus it represents
the original feature 54; In the right column, =4 is a start node in

the connection =4 ! =3, thus it represents the interactive feature
54 ⌦ 52, which is propagated from crossing in the previous order.
The generated interactive features via crossing at each layer are
synthesized in the start node and propagated to the next layer. The
edge and propagation are denoted as the dotted frames and dotted
arrows in di�erent colors respectively in the �gure.

Formally, the useful interactive features suggested by FIVES
can be given as {521 ⌦ · · · ⌦ 52: ⌦ 58 |921, . . . , 2: , s.t. A

( 9)
8,2 9

= 1, 9 =
1, . . . ,:}.

3 EXPERIMENTS
We conduct a series of experiments to demonstrate the e�ectiveness
of the proposed FIVES method, with the aims to answer the follow-
ing questions. Q1: When the learned (A,Θ) of FIVES solely serves
as a predictive model, how it performs compared to state-of-the-art
feature generation methods? Q2: Could we boost the performance
of some lightweight models with the interactive features generated
by FIVES?Q3: How do di�erent components of FIVES contribute to
its performance? Q4: Are the interactions indicated by the learned
adjacency tensor A really useful? Q5: Can FIVES run as e�cient
as existing DNN-based methods? Q6: Can we improve the CTR
in a real-world e-commerce platform by deploying the interactive
features generated by FIVES?

Datasets. We conduct experiments on �ve benchmark datasets
that are widely adopted in related works, and we also include two
more real-world business datasets. The datasets are randomly par-
titioned for a fair comparison, and their statistics are summarized
in Table 1. The availability of the benchmark datasets can be found
in Appendix B.

Table 1: Statistics of datasets.

# Features # Train # Test

Employee 9 29,493 3,278
Bank 20 27,459 13,729
Adult 42 32,561 16,281
Credit 16 100,000 50,000
Criteo 39 41,256K 4,584K
Business1 53 1,572K 673K
Business2 59 25,078K 12,537K

Preprocessing.We discretize numeric features into {10, 100, 1000}
equal-width buckets. Then the numeric features are transformed
into one-hot vector representations according to their bucket in-
dices. This follows the multi-granularity discretization proposed
in [21]. For all the rare feature category values (whose frequency is
less than 5), we assign them the same identi�er.

Metric. Following existing works, we use AUC to evaluate the
predictive performance. A higher AUC indicates a better perfor-
mance. As has been pointed out in the previous studies [4, 21, 30],
a small improvement (at 0.001-level) in o�ine AUC evaluation
can make a signi�cant di�erence in real-world business predictive
tasks such as CTR prediction in advertisements.

3.1 FIVES as a predictive model (Q1)
As mentioned in Section 2.4, the learned (A,Θ) of FIVES is a predic-
tive model by itself. We adopt the following methods as baselines,
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FIVES

FIVES: Feature Interac]on Via Edge Search for Large-Scale Tabular Data. KDD, 2021.

q Extensive experiments on five public datasets and two business datasets confirm that FIVES can 
generate useful interactive features.
• FIVES as a predictive model for downstream tasks, such as CTR prediction
• FIVES as the feature generator for lightweight models to meet the requirement of inference 

speed

Correla+on between the entries of 𝐴 and the AUC of the 
corresponding indicated feature.

Efficiency comparisons.
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Takeaways

DNN-based methods 
• Implicit feature generation
• One-shot training course
• Lack of interpretable rules for feature 

interactions

Search-based methods 
• Explicit feature generaPon
• Trial-and-error training manner
• Need lots of Pme and compuPng resource

AutoFeature
Model

Useful Interactive
Features

ü Feature Interpretability
ü Search Efficiency
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Future Directions
qHow to introduce human experience as prior knowledge for AutoFeature?

qCausal features or spurious correlations?

qHow to balance the trade-off between the usefulness of generated 
features and the completeness of them?
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VolcanoML: End-to-End AutoML via 
Scalable Search Space Decomposition
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Two Complica3ons of AutoML going E2E

105

𝛼∗ = argmax
Y

𝑓 𝐷′, 𝜃Y∗

s.t, 𝜃Y∗ = argmax
Z
𝑃 𝐷 𝜃 𝑃(𝜃|𝛼)

AutoML

Two Complications
1. 𝛼 is not a homogenous space, it is rather 

heterogenous

𝛼 ∈ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑃 ×𝑀𝑜𝑑𝑒𝑙

2. From single-tenant to mul+-tenant scenarios

(auto-sklearn)

Personal perspec,ves, from our past experiences

• VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space 
Decomposi,on. VLDB 2021. 

• AutoML from Service Provider's Perspec,ve: Mul,-device, Mul,-tenant Model 
Selec,on with GP-EI. AISTATS 2019.

• Ease.ml: Towards Mul,-tenant Resource Sharing for Machine Learning 
Workloads. VLDB 2018. 



Disclaimer
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This segment of the tutorial is more opinioned and closer to our own 
experience than previous segments

It is less about how much we know about these two problems, but 
more about discussing some observations and preliminary explorations 
to show you what we don’t know and a “cry for help”.



Heterogenous Search Space

• 𝑭𝒆𝒂𝒕𝒖𝒓𝒆 × 𝑯𝑷 ×𝑴𝒐𝒅𝒆𝒍
• A strong baseline: Treat the heterogenous space as a single 

joint space.
• Model it with a single Bayesian op9miza9on problem, a 

single gene9c algorithm, or a single hyperband problem
• Good? Very powerful approach, yet simple.
• Could be improved? 

• “The curse of dimensionality”: oFen it is not easy to 
scale up when the dimensionality of the space is high.

• Heterogeneity in algorithm: Different subspaces might 
benefit from different algorithms. 

• Can we do be1er?
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Heterogenous Search Space

• Different ways to conduct search. Let’s take for example the 
space 𝜶 ∈ 𝑿 ×𝒀
• Strategy 1. Joint

• Treating the space 𝑿 ×𝒀 as a single search space
• (If you are doing BO) Create a surrogate model M to approximate 𝑓(𝛼)
• Use M to select (𝜶
• Evaluate 𝑓((𝜶) and update the surrogate model M

• One can implement such a strategy using methods beyond BO.
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Heterogenous Search Space

• Different ways to conduct search. Let’s take for example the space 
𝜶 ∈ 𝑿 ×𝒀
• Strategy 2. Conditioning

• Idea: decompose 𝑿 ×𝒀 into multiple subspaces, e.g., one for each value of 𝑿
• min;,<𝑓 𝑥, 𝑦 ⇒ min

;∈>
min
<
𝑔;(𝑦)

• Then treating each 𝑥 ∈ 𝑋 as a subproblem min
<
𝑔;(𝑦)

• Can be modeled as a Multi-armed bandit problem – each arm corresponds to a 
possible value of 𝑥 ∈ 𝑋, playing an arm means optimizing min

<
𝑔;(𝑦) one step

• For example, think about X as Algorithm and Y as Feature – For each 
Algorithm, search for the best feature, and pick the best Algorithm
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Heterogenous Search Space

• Different ways to conduct search. Let’s take for example the space 
𝜶 ∈ 𝑿 ×𝒀
• Strategy 3. AlternaCng

• Idea: decompose 𝑿 ×𝒀 into two subspaces, 𝑿 and 𝒀
• Solve two problems alternaPvely:

• min
+
𝑔,𝒚 𝑥 , where *𝑦 is the current best value for subspace 𝑌

• min
.
𝑔+̅(𝑦), where �̅� is the current best value for subspace 𝑋

• Each subproblem can be solved either jointly or via some condiPoning strategy
• At each iteraPon, pick the subproblem with the largest expected improvement

• For example, think about X as Feature and Y as HP – AlternaCng the 
process of search for feature and search for HP
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Heterogenous Search Space

• Different ways to conduct search
• Strategy 1. Joint

• Pros: Simple, works well when dimensionality is low
• Cons: Might suffer when the dimensionality is high

• Strategy 2. Conditioning
• Pros: Effective when some dimension is categorical variable with small cardinality
• Cons: Might not be applicable to other scenarios.

• Strategy 3. Alternating
• Pros: Very effective in reducing dimensions
• Cons: Assuming conditional independence of two subspaces
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Heterogenous Search Space

• A single search space can be decomposed in different ways.

112

Different plans have 
different performance

PotenGally, can learn 
to decompose given a 

target workload



Heterogenous Search Space

• Moving Forward
• Build up a suite of different building blocks – what is the 

unified framework to talk about different search algorithms?
• How to automatically construct search space decomposition?
• How to automatically conduct building block selection? 

AutoML for AutoML?
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AutoML: From Single-tenant to Multi-tenant
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Single-tenant Scenario: One target dataset

What if mulGple users running their own AutoML
workload over a shared infrastructure?

Interesting problem especially when AutoML as a 
service becomes more and more popular.



AutoML: From Single-tenant to Multi-tenant
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How to balance resource allocations to different users? 

…

Dn



AutoML: From Single-tenant to Multi-tenant
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Decisions Quality

M1 0.5

M2 0.7

M3 0.76

M4 0.79

M5 0.85

M6 0.87 0
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Regret aver T trials: RT
(Regret: We could have serve the user a beuer model if 
we magically knows the best model to try)

• Regret: A Single User’s Unhappiness



AutoML: From Single-tenant to Mul3-tenant
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AutoML: From Single-tenant to Multi-tenant
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User 1: [0.99] [0.99] 

User 2: [0.10] [0.35] 

Extreme Case: User 1 is not worth serving any more

How about more general case?



AutoML: From Single-tenant to Multi-tenant
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?

01 Each user runs their own GP-EI model selecMon

02
Serve the user with highest expected 
improvement.

Informal Theorem. If the performance of all 
models is a linear combination of a finite, 
shared set of hidden Gaussian variables, the 
global regret converges to 0 with rate O(1 / 
runtime).
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01 Each user runs their own GP-UCB algorithm

02
Serve the user with a factor that is very similar to 
expected improvement (directly comparing each 
user’s UCB does not work, for obvious reason)



AutoML: From Single-tenant to Multi-tenant
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Modeling error dominates Modeling error dominates

Mul+-tenant

Multi-tenant



AutoML: From Single-tenant to Multi-tenant
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Need some special care on the diversity: don’t 
put all GPUs on a single user.
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Pool of Resources

Theorem. Near linear speed up with respect
to the number of devices when # devices << # 
users.



AutoML: From Single-tenant to Multi-tenant

• Moving Forward
• In my opinion, it is exciCng future direcCon to try to understand 

resource allocaCon and scheduling for AutoML workloads
• What’s the unified way to talk about and think about different 

AutoML workloads, e.g., those we have been talking about over the 
last two hours
• Fairness? Efficiency? How should we aggregate unhappiness from 

mulCple users?
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Two Complications of AutoML going E2E
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𝛼∗ = argmax
Y

𝑓 𝐷′, 𝜃Y∗

s.t, 𝜃Y∗ = argmax
Z
𝑃 𝐷 𝜃 𝑃(𝜃|𝛼)

AutoML

Two Complications
1. 𝛼 is not a homogenous space, it is rather 

heterogenous

𝛼 ∈ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 × 𝐻𝑃 ×𝑀𝑜𝑑𝑒𝑙

2. From single-tenant to mul+-tenant scenarios

(auto-sklearn)

A lot of challenges and exciting 
opportunities when bring AutoML to 
and end-to-end production scenario!



AutoML: A Small Personal Remark
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MLBench

VLDB (2018)
http://www.vldb.org
/pvldb/vol11/p1220-
liu.pdf

ML today is now a Data Problem

• For many tasks, given the raw features from Kaggle, most 
AutoML platforms rank in the bottom 50%.

• It is the data that we need to improve, and knowledge that 
we need to integrate, to build better ML applications.

• To improve data, we need to first understand them.

Moving from a Model-driven development to a Data-driven 
development.

http://www.vldb.org/pvldb/vol11/p1220-liu.pdf


ML-Guided Database
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Where DB Meets ML

• Human involved in research/engineering/analyzing/administrating:
• Building and maintaining indexes
• Query optimization
• Physical design tuning
• Optimizing view materialization

• Learning to automatically designing/optimizing/tuning?
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Where DB Meets ML: Learning to Index

• Human involved in research/engineering/analyzing/administrating:
• Building and maintaining indexes
• Query optimization
• Physical design tuning
• Optimizing view materialization

• Learning to automatically designing/optimizing/tuning?
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B-Tree Index from Learning Perspective

Input: Key
Output: Posi+on
B-Tree Index: posi+on = B-tree(Key)

Input: Key
Output: Position
Learned Index: position = function(Key)

[Image source] Kraska et al., The case for learned index structures. SIGMOD, 2018

Key Key
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Why Learning Index from Data?

• Consider this (ideal) case: build an index to store and query over a 
table of n rows with continuous integer keys, i.e., Keys = [11, 12, 13, 
14, 15, ...] and Pos = [0, 1, 2, 3, 4, …]
• B-Tree: seeking Pos in time O(log n)
• a learned function Pos = M(Key) = Key + offset : O(1)

• Main motivation: the hidden yet useful distribution information 
about the data to be indexed has not been fully explored and utilized 
in the classic index techniques
• learned index: an automatic way to explore and utilize such information
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Recursive-Model Index (RMI) 

Data to be indexed

Sub-models

Root model

[Image source] Kraska et al., The case for learned index structures. SIGMOD, 2018 131



FITing-Tree

Error-Bounded Linear Segment: Given threshold 𝑒𝑟𝑟𝑜𝑟, 
a segment from (𝑥5, 𝑦5) to (𝑥7, 𝑦7) is not valid if (𝑥8, 𝑦8)
is further than 𝑒𝑟𝑟𝑜𝑟 from the interpolated line. 

ShrinkingCone (building a segment): Point 1 is the origin of the 
cone. Point 2 is then added, resulting in the dashed cone. Point 
3 is added next, yielding in the dotted cone. Point 4 is outside 
the dotted cone and therefore starts a new segment. 

[Image source] Galakatos et al., FITing-Tree: A Data-aware Index Structure. SIGMOD, 2019 132



RMI v.s. FITing-Tree

Sub-models

RMI

Sub-model
Organization

B-TreeRoot Model
e.g., y=ax+b

FITing-Tree
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More Learned Index Methods
• PGM [1] improves FITing-Tree by finding the optimal number of learned 

segments given an error bound. 

• ALEX [2] proposes an adaptive RMI with workload-specific optimization, 
achieving high performance on dynamic workloads. 

• RadixSpline [3] gains competitive performance with a radix structure 
while using a single-pass training. 

• Multi-dimensional indexes: NEIST [4], Flood [5], Tsunami [6] and LISA [7]. 
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More Learned Index Methods
• [1] The PGM-Index: A Fully-Dynamic Compressed Learned Index with Provable 

Worst-Case Bounds. PVLDB, 2020.
• [2] ALEX: An Updatable AdapCve Learned Index. SIGMOD, 2020.
• [3] RadixSpline: A Single-Pass Learned Index. In aiDM Workshop on SIGMOD, 2020.
• [4] NEIST: a Neural-Enhanced Index for SpaCo-Temporal Queries. TKDE, 2019.
• [5] Learning MulC-dimensional Indexes. SIGMOD, 2020. 
• [6] Tsunami: A Learned MulC-dimensional Index for Correlated Data and Skewed 

Workloads. PVLDB, 2020.
• [7] LISA: A Learned Index Structure for SpaCal Data. SIGMOD, 2020.
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Questions about Learned Indexes
How to systematically analyze and design 
machine learning based indexing methods?

More scalable index learning methods?

Which class of models suffice?
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Task Definition

• Given a database D  with n records (rows), let’s assume that a range 
index structure will be built on a specific column  x. For each record 
𝑖 ∈ [𝑛], the value of this column,      , is adopted as the key, and      is 
the posi0on where the record is stored. 

• We want to learn a mechanism with the key     as input and 
outputs a predicated posi0on yˆ ← M (x) for accessing data. 
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Learning Index: A Machine Learning Task

measures the cost of 
calcula+ng

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf 138



training lossregularization
trade-off

objective function

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf

Learning Index: A Machine Learning Task
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Benefits of Learned Index

• Smaller Size
• Faster Index Seek
• Better Handling Index Update
• Generalization ability of machine learning
• Incremental learning

• Question Mark
• Is model training/inference scalable enough?
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• How large the sample needs to be?
• 𝑛 is the data size
• 𝑀∗ is fully opCmized

Learned Index with Sampling

Fig: Illustration of sampling

A Pluggable Learned Index Method via Sampling and Gap Inser+on, hups://arxiv.org/pdf/2101.00808.pdf 141



Learned Index with Sampling

• Up to 78x
building speedup 

• Non-degraded 
performance in 
terms of query
time and
prediction error)

Fig: Illustration of sampling

A Pluggable Learned Index Method via Sampling and Gap Inser+on, hups://arxiv.org/pdf/2101.00808.pdf 142



Is Linear Model Sufficient?

• Linearization of a learned model
A learned model                                (𝒚 = 𝑴(𝒙)
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Is Linear Model Sufficient?

• Linearization of a learned model
A learned model                                (𝒚 = 𝑴(𝒙)

Landmark points                               … , 𝒙𝒍, 𝒚𝒍 , 𝒙𝒓, 𝒚𝒓 , …

Linearized model                               9𝒚 = 𝑴𝐋 𝒙
connecting 𝒙𝒍, (𝒚𝒍 = 𝑴(𝒙𝒍) to 𝒙𝒓, (𝒚𝒓 = 𝑴(𝒙𝒓)

Theorem 2. Suppose ∀𝑥, (𝒚 − 𝑦 ≤ 𝜖, after linearization, we 
have ∀𝑥, 9𝒚 − 𝑦 ≤ 3𝜖 + 2(𝒚𝒓 − 𝒚𝒍).

Yes! As long as landmark 
points are dense enough

A Pluggable Learned Index Method via Sampling and Gap Inser+on, hups://arxiv.org/pdf/2101.00808.pdf 146



Sampling-Restriction-Linearization

Restriction LinearizationLearned Index on Sampled Data

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf

Sampled data points as landmark points: 
… , 𝒙𝒍, 𝒚𝒍 , 𝒙𝒓, 𝒚𝒓 , …
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Open Questions

• How to handle extremely outlier keys?

• How to maintain index on updating data? [2]

• How to handle multi-dim data? [5, 6, 7]

• How to build it into real DB systems?
• without too much modification to the current system

148



AutoML Tools 
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Availability
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AutoML

Hyperparameter 
Optimization 

Auto Feature 
Generation

Compressed
Model Search

Meta-Learning

AdaBERT: Task-Adaptive BERT 
Compression with D-NAS, IJCAI 2020 
https://arxiv.org/abs/2001.04246

FIVES: Feature Interaction Via Edge Search for 
Large-Scale Tabular Data, KDD 2021.
https://arxiv.org/abs/2007.14573

Automated Relational Meta-learning, 
ICLR 2020.
https://arxiv.org/abs/2001.00745

Learning to Mutate with Hypergradient
Guided PopulaMon, NeurIPS 2020.

https://arxiv.org/abs/2001.04246
https://arxiv.org/abs/2007.14573
https://arxiv.org/abs/2001.00745


Availability

AutoML

Hyperparameter 
Op+miza+on 

Feature
Generation

Compressed
Model Search

Meta-Learning

Publicly available at 
Alibaba Platform of A.I., 
AutoML product

Publicly available at 
Alibaba PlaRorm of A.I., 
EasyTransfer product
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A Summary of AutoML Tools
Name Authors Functionalities Algorithms Language

Auto Tune Models (ATM) MIT AutoFeature, Model Selection,
HPO

BO and Bandit Python

AutoKeras Texas A&M
University

NAS BO Python

NNI Microsoft AutoFeature, HPO, NAS, Model
Selection

Comprehensive Python

emukit Amazon HPO Meta-surrogate
model

Python

Ray Tune Berkeley HPO Comprehensive Python

TPOT University of
Pennsylvania

AutoFeature, Model Selection,
HPO

Genetic
programming

Python

More AutoML packages include AutoFolio, Auto-sklearn, Auto-PyTorch, Auto-WEKA, etc.
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https://github.com/HDI-Project/ATM
https://github.com/keras-team/autokeras
https://github.com/microsoft/nni
https://github.com/amzn/emukit
https://github.com/ray-project/ray/tree/master/python/ray/tune
https://github.com/EpistasisLab/tpot


Tutorial Schedule

Yaliang Li, Background and Overview of AutoML
Hyperparameter Optimization  

Zhen Wang, Neural Architecture Search 
Meta-Learning

Yuexiang Xie, Automatic Feature Generation 

Ce Zhang, VolcanoML: End-to-End AutoML via        
Scalable Search Space DecomposiPon 

Bolin Ding, Machine Learning Guided Database 
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Thank you!

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, and Ce Zhang

Email: yaliang.li@alibaba-inc.com
Please feel free to contact us if you have any questions, 
or you are interested in full-time or research intern positions.
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